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1 Introduction

1.1 Presentation of the problem and of the result

In this paper we consider completely resonant nonlinear wave equations like{
utt − uxx + f(λ, x, u) = 0
u(t, 0) = u(t, π) = 0 (1.1)

where the nonlinearity
f(λ, x, u) = ap(x)up + O(up+1) , p ≥ 2 , (1.2)

vanishes at least quadratically at u = 0 and possibly depends on finitely many parameters λ.
Equation (1.1) is an infinite dimensional Hamiltonian system possessing an elliptic equilibrium at

u = 0. Any solution v =
∑

j≥1 aj cos(jt + θj) sin(jx) of the linearized equation{
utt − uxx = 0
u(t, 0) = u(t, π) = 0 (1.3)

is 2π-periodic in time (has frequency ω = 1). For this reason, equation (1.1)-(1.2) is called a completely
resonant PDE.

• Question: Do there exist small amplitude periodic solutions of the nonlinear equation (1.1)-(1.2)
with frequencies ω in a set of asymptotically full measure at ω = 1?

For finite dimensional Hamiltonian systems, existence of periodic solutions close to a completely
resonant elliptic equilibrium has been proved by Weinstein [28], Moser [22] and Fadell-Rabinowitz [17].
The proofs are based on the Lyapunov-Schmidt decomposition which splits the problem into (i) the range
equation, solved through the standard Implicit Function Theorem, and (ii) the bifurcation equation, solved
via variational arguments.

To extend these results for completely resonant PDEs the main difficulties to be overcome are (i)
a “small divisors problem” which prevents, in general, to use the standard implicit function theorem to
solve the range equation; (ii) the presence of an infinite dimensional bifurcation equation: which solutions
v of the linearized equation (1.3) are continued to solutions of the nonlinear equation (1.1)?

The small divisors problem (i) is a common feature of Hamiltonian PDEs, see e.g. [12]. This difficulty
was first solved by Kuksin [19] and Wayne [27] using KAM theory (other existence results of quasi-periodic
solutions with KAM theory were obtained e.g. in [21], [23], [24], [11] see also [20] and references therein).

In [13] Craig and Wayne introduced the Lyapunov-Schmidt reduction method for periodic solutions
of “non-resonant” or “partially resonant” wave equations like utt − uxx + a1(x)u = f(x, u) where the
bifurcation equation is finite dimensional, see also Bourgain [7]-[8] for quasi-periodic solutions. Because
of the small divisors problem (i), the range equation is solved via a Nash-Moser Implicit function technique
only for a Cantor like set of parameters. The presence of these “Cantor gaps” constitutes the main issue
to solve the bifucation equation by variational methods in the case of PDEs, the difficulty being to ensure
an “intersection property” between the solution sets of the bifurcation and the range equations.

In [13]-[14] the finite dimensional bifurcation equation (called the (Q)-equation) is solved assuming
the existence of a non-degenerate solution of the “0th-order bifurcation equation” (it is the so called
“twist” or “genuine nonlinearity” condition). In this case, by the Implicit function theorem, there exists
a smooth path of solutions of the bifurcation equation intersecting “transversally” -and therefore for a
positive measure set of frequencies- the Cantor set where also the range equation had been solved. We
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underline that the non-degeneracy condition is generically satisfied in [13] when the bifurcation equation
is 2 dimensional, but it is a difficult task yet in the 2m-dimensional case considered in [14] where it is
verified just on examples.

For completely resonant PDEs like (1.1)-(1.2) where a1(x) ≡ 0, both small divisor difficulties and
infinite dimensional bifurcation phenomena occur.

The first existence results of small amplitude periodic solutions of (1.1)-(1.2) have been obtained in [3]
for f = u3 + O(u5), imposing on the frequency ω a “strongly non-resonance” condition which is satisfied
in a zero measure set accumulating at ω = 1 . For such ω the small divisor problem (i) does not appear.
Next, the bifurcation equation (problem (ii)) is solved proving that the 0th-order bifurcation equation
(which reduces to an ordinary differential equation) possesses non-degenerate periodic solutions.

In [4]-[5], for the same zero measure set of frequencies, existence and multiplicity of periodic solutions
have been proved for any nonlinearity f(u) = apu

p + O(up+1), p ≥ 2. The novelty of [4]-[5] was to solve
the infinite dimensional bifurcation equation via a variational principle at fixed frequency (in the spirit
of Fadell-Rabinowitz [17]) which, jointly with min-max arguments, enables to find periodic solutions of
(1.1)-(1.2) as critical points of the Lagrangian action functional, more precisely “mountain pass” critical
points [1] of a “reduced” action functional. This approach enables to remove the non-degeneracy condition
on the bifurcation equation for a zero measure set of frequencies.

Existence of periodic solutions for positive measure sets of frequencies has been proved in [9] (for
periodic spatial boundary conditions) and in [18] with the Lindsted series method for f = u3 + O(u5).
Again the dominant term u3 garantees a non-degeneracy property.

In [6] a general approach to solve the difficulty posed by the presence of an infinite dimensional
bifurcation equation has been proposed, performing a finite dimensional reduction on a subspace of large,
but finite, dimension depending only on the nonlinear term ap(x)up, see sections 3-4. The range equation
is solved with a simple Nash-Moser implicit function theorem on a Cantor like set B∞ of parameters, see
section 5. Next, to find solutions of the bifurcation equation in this Cantor set for asymptotically full
measure sets of frequencies, the 0th order bifurcation equation was assumed to possess non-degenerate
periodic solutions, property verified in [6]-[2] for nonlinearities like e.g. a2u

2, a3(x)u3, a4u
4 + h.o.t.

In the present paper we solve the bifurcation equation via a variational principle (section 6) for
asymptotically full measure sets of frequencies, dealing with more general nonlinearities, see Theorems
1.1, 1.2 and Corollary 1.1. In particular we don’t require any non-degeneracy condition for the “0th
order bifurcation equation”. This is a conceptually important problem, being a necessary step to apply
variational methods in a problem with small divisors.

As already said, the main problem to overcome is to prove the intersection between the solution sets
of the bifurcation and the range equations. For this, the main task is to control how the solution of the
bifurcation equation varies with the frequency. Since it is possible to show that the complementary of the
Cantor set B∞ is arcwise connected, it would not be sufficient to find just a continuous path of solutions.
In the non-degenerate case there is a C1-path of solutions. To relax the non-degeneracy condition we first
prove that, if there is a path of solutions which depends (in some sense) just in a BV way on the frequency
(see the BV-property (5.21)), then it intersects the Cantor set B∞ where also the range equation is solved
for an asymptotically full measure set of frequencies, see Corollary 5.1.

We are not able to ensure this BV-property for any nonlinearity f(x, u) = ap(x)up+O(up+1), therefore
we consider parameters-depending families of nonlinearities

f(λ, x, u) = ap(x)up +
M∑
i=1

λibi(x)uqi + r(x, u) , qi ≥ q > p (1.4)

where q > p ≥ 2 can be arbitrarily large, λi ∈ R are real parameters and r(x, u) :=
∑

k>p rk(x)uk

satisfies ‖r‖ρ :=
∑

k>p ‖rk‖H1ρk < ∞ for some ρ > 0. We prove the following result (see Theorem 1.2
for a more precise statement):

Theorem 1.1 Assume ap(π − x) 6≡ (−1)pap(x). For any q > p there exist integer exponents q ≤ q1 ≤
. . . ≤ qM and coefficients b1, . . . , bM ∈ H1(0, π) depending only on ap, such that, for every r(x, u) =
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∑
k>p rk(x)uk with ‖r‖ρ < ∞, equation (1.1) with nonlinearity f(λ, x, u) like in (1.4) possesses, for almost

every parameter λ = (λ1, . . . , λM ), |λ| ≤ 1, small amplitude periodic solutions for an asymptotically full
measure Cantor set of frequencies ω close to 1.

Remark 1.1 In Theorem 1.1 the technical condition ap(π − x) 6≡ (−1)pap(x) is just assumed for sim-
plicity so that the “0th order bifurcation equation” reduces simply to (1.20). A similar result holds also
when this condition is not satisfied, the correct bifurcation equation involving higher order terms of the
nonlinearity like in [4]-[5]-[6]-[2].

We remark that, since qi > p, the nonlinearities λibi(x)uqi (and also r(x, u) = O(up+1)) do not change
the 0th-order bifurcation equation (see equation (1.20)), which in particular might have only degenerate
solutions. Actually, since we can choose the exponents qi ≥ q arbitrarily large, we are adding arbitrarily
small corrections bi(x)uqi = o(up) for u → 0. Moreover we underline that, given ap(x)up, bi(x)uqi ,
Theorem 1.1 is valid for any nonlinear term r(x, u) =

∑
k>p ak(x)uk, r having an influence only on the

full measure set of parameters λ for which the existence result holds.
Furthermore, given āp such that āp(π− x) 6≡ (−1)pāp(x), the qi, bi can be taken the same for ap in a

neighborhood of āp in H1(0, π) , see Remark 7.1. For these reasons Theorem 1.1 can be interpreted as a
genericity result in the sense of Lebesgue measure. To make this precise, define the Banach space

F :=
{

f(x, u) := ap(x)up +
∑
k>p

fk(x)uk , ap, fk ∈ H1(0, π) , ‖f‖ρ := ‖ap‖H1ρp +
∑
k>p

‖fk‖H1ρk < ∞
}

endowed with norm ‖ ‖ρ. Let F be the M -dimensional subspace of F spanned by {bi(x)uqi ; 1 ≤ i ≤ M}
and define in F the measure mF := P∗m, where m is the Lebesgue measure in RM and P (λ1, . . . , λM ) :=∑M

i=1 λibi(x)uqi . Let BF := P (B(1)) and let us introduce the dense open subset of F

U =
{

f ∈ F | ap(π − x) 6≡ (−1)pap(x)
}

.

As a consequence of Theorem 1.1 and Remark 7.1 we have

Corollary 1.1 For any f̄ ∈ U , for any q > p, there is an open neighborhood V of f̄ in F , integer
exponents q ≤ q1 ≤ . . . ≤ qM and coefficients b1, . . . , bM ∈ H1(0, π) such that, for any g ∈ V, there is a
subset A(g) ⊂ BF of full mF -measure such that, for any h ∈ A(g), the equation{

utt − uxx + g(x, u) + h(x, u) = 0
u(t, 0) = u(t, π) = 0

possesses small amplitude periodic solutions for an asymptotically full measure Cantor set of frequencies
ω close to 1.

The main idea for proving the BV-property (5.21) for nonlinearities like in (1.4) –and therefore for
proving Theorem 1.1 and Corollary 1.1– is somehow related to the Struwe “monotonicity method” [26]
for families of parameters dependent functionals. The information of how the critical points of a family
of functionals vary with the parameters is in general very hard to obtain. On the contrary, the critical
values behave rather smoothly w.r.t. the parameters. We shall infer the BV-property for the solutions of
the bifurcation equation (Proposition 6.1) by a BV-information on the derivatives (w.r.t λ) of the critical
levels (section 2), choosing properly the exponents qi and the coefficients bi, see Proposition 7.1. We
postpone a detailed description of our ideas in the next subsection.

At last we would like to mention that global variational methods for nonlinear wave equations were
applied in the pioneering papers of Rabinowitz [25] and Brezis-Coron-Nirenberg [10], giving rise (in a
different setting) to existence results for periodic weak solutions with rational frequency. See De La Llave
[15] for some other variational result in the case of irrational frequencies.
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1.2 Functional setting and variational Lyapunov-Schmidt reduction

Normalizing the period to 2π, we look for solutions of{
ω2utt − uxx + f(λ, x, u) = 0
u(t, 0) = u(t, π) = 0

(1.5)

in the real Hilbert space

Xσ,s :=
{

u(t, x) =
∑
l≥0

cos(lt) ul(x)
∣∣∣ ul ∈ H1

0 ((0, π),R), ∀l ∈ N , and

‖u‖2σ,s := π
∑
l≥0

exp (2σl)(l2s + 1)‖ul‖2H1
0

< +∞
}

(1.6)

where ‖ul‖2H1
0

:=
∫ π

0
(∂xul)2(x) dx.

It is natural to look for even in time solutions because equation (1.5) is reversible.
For σ > 0, s ≥ 0, the space Xσ,s is the space of all 2π-periodic, even, functions with values in

H1
0 ((0, π),R), namely

T := (R/2πZ) 3 t 7→ u(t)(x) :=
∑
l≥0

cos(lt)ul(x) ∈ H1
0 ((0, π),R) ,

which have a bounded analytic extension in the complex strip |Im t| < σ with trace function on |Im t| = σ
belonging to Hs(T,H1

0 ((0, π),C)). For 2s > 1, Xσ,s is a Banach algebra, namely

‖u1u2‖σ,s ≤ κ‖u1‖σ,s‖u2‖σ,s , ∀u1, u2 ∈ Xσ,s . (1.7)

The space of the (even in time) solutions of the linear equation (1.3) that belong to H1
0 (T× (0, π)) is

V :=
{

v(t, x) =
∑
l≥1

ul cos(lt) sin(lx)
∣∣∣ ul ∈ R,

∑
l≥1

l2|ul|2 < +∞
}

(1.8)

=
{

v(t, x) = η(t + x)− η(t− x)
∣∣∣ η ∈ H1(T,R) with η(·) odd

}
.

On the nonlinearity we assume that r(x, u) =
∑

k>p rk(x)uk with rk(x) ∈ H1(0, π) satisfies the
analyticity assumption

‖r‖ρ :=
∑
k>p

‖rk‖H1ρk :=
∑
k>p

( ∫ π

0

(∂xrk)2(x) + r2
k(x) dx

)1/2

ρk < +∞ (1.9)

for some ρ > 0.
Instead of looking for solutions of (1.5) in a shrinking neighborhood of zero it is convenient to perform

the rescaling
u → δu , δ > 0 ,

obtaining {
ω2utt − uxx + δp−1g(δ, λ, x, u) = 0
u(t, 0) = u(t, π) = 0

(1.10)

where

g(δ, λ, x, u) :=
f(λ, x, δu)

δp
= ap(x)up +

∑
k>p

rk(x)δk−puk +
M∑
i=1

λiδ
qi−pbi(x)uqi

= ap(x)up +
∑
k>p

ak(λ, x)δk−puk (1.11)
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where we have set
ak(λ, x) := rk(x) +

∑
qi=k

λibi(x) .

By the analyticity assumption (1.9), the Nemistky operator induced by g(δ, λ, x, ·) is C∞ on the ball {u ∈
Xσ,s | δκ‖u‖σ,s < ρ}. Indeed, by the algebra property (1.7) of Xσ,s, the power series

∑
k≥p ak(λ, x)δk−puk

is convergent on this ball, and∥∥∥g(δ, λ, x, u)
∥∥∥

σ,s
≤ C‖ap‖H1‖u‖p

σ,s + C‖u‖p
σ,s

∑
k>p

‖ak(λ, x)‖H1(δκ‖u‖σ,s)k−p

≤ 2C‖ap‖H1‖u‖p
σ,s (1.12)

for δ > 0 small enough.
Critical points of the Lagrangian action functional Ψ(δ, λ, ·) : Xσ,s 7→ R

Ψ(δ, λ, u) :=
∫

Ω

ω2

2
u2

t −
u2

x

2
− εG(δ, λ, x, u) dtdx (1.13)

where
Ω := T× (0, π) , ε := δp−1

and

G(δ, λ, x, u) :=
∫ u

0

g(δ, λ, x, z) dz = ap(x)
up+1

p + 1
+ δap+1(λ, x)

up+2

p + 2
+ . . .

are weak solutions of (1.10). Note that Ψ is C∞ on the set {(δ, λ, u) | |λ| ≤ 1, δκ‖u‖σ,s < ρ}.
Actually any critical point u ∈ Xσ,s of Ψ(δ, λ, ·) is a classical solution of (1.10) because the map

x 7→ uxx(t, x) = ω2utt(t, x) − εg(δ, λ, x, u(t, x)) belongs to H1
0 (0, π) for all t ∈ T and, hence, u(t, ·) ∈

H3(0, π) ⊂ C2(0, π).
To find critical points of Ψ(δ, λ, ·) we implement a Lyapunov-Schmidt reduction according to the

orthogonal decomposition
Xσ,s = (V ∩Xσ,s)⊕ (W ∩Xσ,s)

where

W :=
{

w =
∑
l∈Z

exp(ilt) wl(x) ∈ X0,s | w−l = wl and
∫ π

0

wl(x) sin(lx) dx = 0, ∀l ∈ Z
}

.

Looking for solutions u = v + w with v ∈ V , w ∈ W , we are led to solve the bifurcation equation (called
the (Q)-equation) and the range equation (called the (P )-equation)− (ω2 − 1)

2
∆v = δp−1ΠV g(δ, λ, x, v + w) (Q)

Lωw = δp−1ΠW g(δ, λ, x, v + w) (P )
(1.14)

where
∆v := vxx + vtt , Lω := −ω2∂tt + ∂xx

and ΠV : Xσ,s → V , ΠW : Xσ,s → W denote the projectors respectively on V and W .
In order to find non-trivial solutions of (1.14) we impose a suitable relation between the frequency ω

and the amplitude δ (ω must tend to 1 as δ → 0). The simplest situation occurs when

ΠV (ap(x)vp) 6≡ 0 . (1.15)

Assumption (1.15) amounts to require that

∃v ∈ V such that
∫

Ω

ap(x)vp+1 6= 0 , (1.16)
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which is verified iff
ap(π − x) 6≡ (−1)pap(x) (1.17)

by Lemma 7.1 in [6]. For the sake of simplicity we shall restrict to this case.
When condition (1.15) (equivalently (1.16) or (1.17)) holds, we set the “frequency-amplitude” relation

ω2 − 1
2

= s∗δp−1 , s∗ ∈ {−1,+1} (1.18)

and, recalling ε := δp−1, system (1.14) becomes{
−∆v = s∗ΠV g(δ, λ, x, v + w) (Q)
Lωw = εΠW g(δ, λ, x, v + w) (P ) .

(1.19)

When δ = 0, the (P )-equation is equivalent to w = 0, and hence the (Q)-equation in (1.19) reduces to
the “0th-order bifurcation equation”

−∆v = s∗ΠV (ap(x)vp) (1.20)

which is the Euler-Lagrange equation of the functional Ψ∞ : V 7→ R

Ψ∞(v) =
‖v‖2H1

2
− s∗

∫
Ω

ap(x)
vp+1

p + 1
(1.21)

where
‖v‖2H1 :=

∫
Ω

v2
t + v2

x = ‖v‖20,0 . (1.22)

Choosing

s∗ :=
{

1 if ∃ v ∈ V such that
∫
Ω

ap(x)vp+1 > 0
−1 if ∃ v ∈ V such that

∫
Ω

ap(x)vp+1 < 0 (1.23)

there exists v∞ ∈ V such that Ψ∞(v∞) < 0. The mountain pass value

c∞ := inf
{

max
t∈[0,1]

Ψ∞(γ(t)) | γ ∈ C([0, 1], V ) , γ(0) = 0 , γ(1) = v∞

}
> 0 (1.24)

is a critical level2 of Ψ∞ (see remark 3.1) with a critical set

K∞ :=
{

v ∈ V \{0} | Ψ∞(v) = c∞ , dΨ∞(v) = 0
}

which is compact for the H1-topology, see Lemma 3.2.
For δ > 0 small we expect solutions of the (Q)-equation in (1.19) close to K∞. However, we don’t

know in general if the critical points v ∈ K∞ are non-degenerate, i.e. if KerD2Ψ∞(v) = {0}.
To deal with the presence of an infinite dimensional bifurcation equation, we introduce as in [6] the

finite dimensional decomposition
V = V1 ⊕ V2

where  V1 :=
{

v =
∑N

l=1 ul cos(lt) sin(lx) ∈ V
}

“low Fourier modes”

V2 :=
{

v =
∑

l≥N+1 ul cos(lt) sin(lx) ∈ V
}

“high Fourier modes”.

Setting v := v1 + v2, with v1 ∈ V1, v2 ∈ V2, system (1.19) becomes−∆v1 = s∗ΠV1g(δ, λ, x, v1 + v2 + w) (Q1)
−∆v2 = s∗ΠV2g(δ, λ, x, v1 + v2 + w) (Q2)
Lωw = εΠW g(δ, λ, x, v1 + v2 + w) (P )

(1.25)

2Actually Ψ∞ has a sequence of critical levels tending to +∞, see [1].
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where ΠVi
: Xσ,s → Vi (i = 1, 2) denote the projectors on Vi.

Our strategy to find solutions of system (1.25) is the following.
Step 1: Solution of the (Q2)-equation. The solution v2(δ, λ, v1, w) of the (Q2)-equation is found as
a fixed point of v2 7→ s∗(−∆)−1ΠV2g(δ, λ, x, v1 + v2 + w) by the Contraction mapping theorem, provided
N ≥ N with N depending only on ap(x)up. Heuristically (see subsection 3.2) to find solutions of the
complete bifurcation equation close to the solutions K∞ of the 0th order bifurcation equation (1.20), N
must be taken large enough so that the majority of the H1-norm of the solutions of K∞ is “concentrated”
on the first N Fourier modes.
Step 2: Solution of the (P )-equation. We solve next the range equation

Lωw = εΠW Γ(δ, v1, w) where Γ(δ, λ, v1, w) := g(δ, λ, x, v1 + v2(δ, λ, v1, w) + w)

by means of a Nash-Moser type Implicit Function Theorem [6] for (δ, λ, v1) belonging to some Cantor-like
set B∞ of parameters, see Proposition 5.1, an advantage being the explicit definition of B∞. This will
be exploited for the measure estimate of Proposition 5.2.

To understand why such Cantor set B∞ arises, we recall that the core of any Nash-Moser convergence
method is the proof of the invertibility of the linearized operators

L(δ, λ, v1, w)[h] := Lωh− εΠW DwΓ(δ, λ, v1, w)[h]

where w is the approximate solution obtained at a given stage of the Nash-Moser iteration. The eigenval-
ues {λlj(δ, λ, v1), l ≥ 0, j ≥ 1} of L(δ, λ, v1, w) accumulate, in general, to zero. This is the small divisors
problem (i). The Cantor set B∞ arises imposing conditions like |λlj(δ, λ, v1)| ≥ |l|−(τ−1), τ > 1, to obtain
the invertibility of L(δ, λ, v1, w) with a controlled estimate of its inverse.
Step 3: Solution of the (Q1)-equation. Finally there remains the finite dimensional (Q1)-equation
(6.1), which is variational in nature: critical points of the “reduced Lagrangian action functional”
Φ̃(δ, λ, v1) defined in (6.2) with (δ, λ, v1(δ, λ)) ∈ B∞ are solutions of the (Q1)-equation (6.1), see Lemma
6.1. Morevoer it is easy to prove the existence, for any δ small enough, of a mountain pass critical set
K(δ, λ) of Φ(δ, λ, ·) which is O(δ)-close to ΠV1K∞, Lemma 6.4.

But the issue is that -unless K∞ contains a non-degenerate critical point of Ψ∞- the critical points
v1(δ, λ) ∈ K(δ, λ) of Φ(δ, λ, ·) could vary in a highly irregular way as δ → 0 belonging to the complementary
of the Cantor set B∞. This is the typical big difficulty for applying variational methods in a problem
with small divisors. Indeed, although B∞ is -in a measure theoretic sense- a “large” set, this “intersection
property” is not obvious because there are “gaps” in B∞.

First we prove that, if there is a path of solutions of the (Q1)-equation δ 7→ v1(δ, λ) which satisfies
the BV-property (5.21), then it intersects the Cantor set B∞ for an asymptotically full measure set of
frequencies, see Proposition 5.2. Here we use the explicit definition of B∞.

We are able to ensure this BV-property for generic families of nonlinearities like in (1.4). The main
point is to choose the higher order nonlinearities bi(x)uqi in such a way that the functionals Φi defined
in (6.14) form locally a set of coordinates in a neighborhood of ΠV1K∞ (see Proposition 6.1).

In conclusion we prove:

Theorem 1.2 Let f(λ, x, u) be like in (1.4) with ap ∈ H1(0, π) satisfying (1.17). For any q > p ≥ 2
there exist integer exponents3 q ≤ q1 ≤ . . . ≤ qM and coefficients b1, . . . , bM ∈ H1(0, π) depending only
on ap, such that, for every r(x, u) satisfying (1.9), equation (1.1) possesses, for almost every parameter
λ = (λ1, . . . , λM ), |λ| ≤ 1, small amplitude periodic solutions for an asymptotically full measure Cantor
set of frequencies ω close to 1.

More precisely, for s ∈ (1/2, 2), there exist σ > 0, a set Cλ ⊂ R+ satisfying

lim
η→0

meas(Cλ ∩ (0, η))
η

= 1 ,

3M depends in general on q. Furthermore we could choose q ≤ q1 < . . . < qM with strict inequalities, see remark 7.1.
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and s∗ ∈ {−1, 1}, such that, for all δ ∈ Cλ, equation (1.5) possesses a 2π-periodic classical solution
u(δ) ∈ Xσ/2,s with ω(δ) =

√
1 + 2s∗δp−1. It holds ‖u(δ)‖0,0 = δR∞ + O(δ2) where R∞ > 0 is the

constant defined in (3.1).
As a consequence, ∀ δ ∈ Cλ, ũ(t, x) := u(δ)(ω(δ)t, x) is a 2π/ω(δ)-periodic classical solution of

equation (1.1).

Notations: B(R;X) denotes the closed ball of radius R, centered at 0, in the space X. For brevity
B(R) := B(R;RM ) is the closed ball in RM of radius 1, centered at 0; intB(R) is the open ball.

We shall say that a function φ : A ⊂ M 7→ R defined on a set A is in Ck(A,R) if it has an extension
φ̃ ∈ Ck(U,R) defined in an open subset U of M , which contains A.

2 Abstract Theorems on critical levels

In this section we prove some abstract results in critical point theory concerning parameter depending
functionals.

Let us first introduce some terminology. If U is an open subset of Rn we shall say that f ∈ L1
loc(U)

has locally bounded (resp. bounded) variations in U if the partial derivatives of f are (resp. bounded)
real Radon measures on U . This property will be denoted by f ∈ BVloc(U) (resp. f ∈ BV (U)).

Given a non empty subset E of R and a function g : E 7→ R we define

V arEg := sup
{ k∑

i=2

|g(δi)− g(δi−1)| , k ∈ N\{0}, δi ∈ E, δ1 ≤ δ2 ≤ . . . ≤ δk

}
∈ [0,+∞] .

It is well known that if I is an open interval of R then f has bounded variations in I iff there is a map g
defined on I such that f = g a.e. and V arIg < +∞.

Theorem 2.1 Let M be a compact metric space, U be some open neighborhood of [0, δ0]×B(1) in R×RM

and I : U ×M 7→ R be a continuous map whose partial derivatives of order one and two w.r.t. (δ, λ) ∈ U
exist and are continuous on U ×M . Define the minimal value map m : [0, δ0]×B(1) 7→ R by

m(δ, λ) := inf
x∈M

I(δ, λ, x), (2.1)

the infimum m(δ, λ) being attained on the minimizing set

M(δ, λ) :=
{

x ∈ M | I(δ, λ, x) = m(δ, λ)
}
6= ∅ .

Then:
(i) m is pseudo-concave, more precisely there exists K > 0 such that

(δ, λ) 7→ m(δ, λ)− K

2
(δ2 + |λ|2)

is a concave function on [0, δ0]×B(1).
(ii) m is differentiable almost everywhere and (Dλm) ∈ L∞((0, δ0)× intB(1)).
(iii) (Dλm) ∈ BV ((0, δ0)× intB(1)) and (Dλm) coincides a.e. with a function (Dλm) satisfying(

λ 7→ Var(0,δ0)(Dλm)(·, λ)
)
∈ L1(intB(1)).

(iv) For (δ, λ) ∈ (0, δ0)× intB(1),

Dλm(δ, λ) exists ⇐⇒ D(δ, λ) :=
{

DλI(δ, λ, x) ; x ∈M(δ, λ)
}

is a singleton; in this case DλI(δ, λ, x) = Dλm(δ, λ), ∀x ∈M(δ, λ), i.e. D(δ, λ) = {Dλm(δ, λ)}.
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Proof. First note that M(δ, λ) 6= ∅ by the continuity of I and the compactness of M .
Let m̃ be the extension of m to U defined as in (2.1).

(i) Fix η > 0 such that [−η, δ0 + η]×B(1 + η) ⊂ U . Let K > 0 be such that

D2
(δ,λ)I(δ, λ, x) < K Id , ∀(δ, λ, x) ∈ [−η, δ0 + η]×B(1 + η)×M (2.2)

(K exists by the compactness of [0, δ0 + η] × B(1 + η) × M and the continuity of D2
(δ,λ)I). Define

h̃ : U ×M 7→ R as

h̃(δ, λ, x) := −I(δ, λ, x) +
K

2
(δ2 + |λ|2) (2.3)

By (2.2), ∀x ∈ M , D2h̃(·, ·, x) > 0 in [−η, δ0 + η]×B(1 + η) and therefore the function h̃(·, ·, x) is convex
on [−η, δ0 + η]×B(1 + η). The supremum of convex functions being convex,

g̃(δ, λ) := sup
x∈M

h̃(δ, λ, x) = − inf
x∈M

I(δ, λ, x) +
K

2
(δ2 + |λ|2) = −m̃(δ, λ) +

K

2
(δ2 + |λ|2)

is convex on [−η, δ0 + η] × B(1 + η) as well. We thus obtain (i), since m is the restriction of m̃ to
[0, δ0]×B(1).

Since the function (δ, λ) 7→ (K/2)(δ2 + |λ|2) is C∞, it is enough to prove that the function g ≡
g̃|(0,δ0)×intB(1) satisfies properties (ii)-(iii).

(ii) By convexity, g̃ is locally Lipschitz-continuous in (−η, δ0 + η)× intB(1 + η) and so

g ∈ W 1,∞((0, δ0)×B(1))

see Thm.5 in sec. 4.2.3 of [16]. Hence by Rademacher’s Theorem g is differentiable a.e. and

vi := Dλi
g ∈ L∞((0, δ0)×B(1))

(defined a.e.) is also the partial derivative w.r.t. λi of g in the sense of the distributions, see Thm.1 in
sec. 6.2 of [16].
(iii) Still by the convexity of g̃, all the second order partial derivatives of g are bounded Radon measures
on (0, δ0) × B(1) (Theorems 2 and 3 in sec. 6.3 of [16]). In particular, for all i, (Dλi

g) has bounded
variations in (0, δ0)× intB(1). Hence, by Theorem 2 in sec. 5.10.2 of [16] there is a measurable function
Dλi

g : (0, δ0)×B(1) 7→ R, equal a.e. to Dλi
g such that∫

B(1)

Var(0,δ0)(Dλi
g)(·, λ) dλ < +∞ .

(iv) We first claim that that any l ∈ D(δ, λ) is a super-differential of m(δ, ·) at λ, more precisely

∀l ∈ D(δ, λ), m(δ, λ + h) ≤ m(δ, λ) + l · h +
K

2
|h|2, (2.4)

for λ + h ∈ intB(1). Indeed, pick up x ∈M(δ, λ) such that l = DλI(δ, λ, x). Let h ≡ h̃|(0,δ0)×intB(1)×M .
Since h(δ, ·, x) is convex,

h(δ, λ + h, x) ≥ h(δ, λ, x) + Dλh(δ, λ, x) · h

and so, recalling (2.3),

I(δ, λ, x) + DλI(δ, λ, x) · h +
K

2
|h|2 ≥ I(δ, λ + h, x) ≥ m(δ, λ + h) . (2.5)

Since x ∈M(δ, λ) we have I(δ, λ, x) = m(δ, λ), and inequality (2.5) yields (2.4).

10



Proof of ⇒) If m is differentiable w.r.t. λ at (δ, λ) and l ∈ D(δ, λ) then Dλm(δ, λ) = l. Indeed, by
(2.4), ∀|v| = 1 and for |t| small,

m(δ, λ + tv)−m(δ, λ)
t

≥ l · v +
K

2
t if t < 0

m(δ, λ + tv)−m(δ, λ)
t

≤ l · v +
K

2
t if t > 0 .

(2.6)

By (2.6), if Dλm(δ, λ) exists then

l · v ≤ lim
t→0−

m(δ, λ + tv)−m(δ, λ)
t

= Dλm(δ, λ) · v = lim
t→0+

m(δ, λ + tv)−m(δ, λ)
t

≤ l · v

and so Dλm(λ, δ) = l.

Proof of ⇐) Now assume that D(δ, λ) = {l} is a singleton. By (2.4), we already know that

lim sup
h→0

m(δ, λ + h)−m(δ, λ)− l · h
|h|

≤ 0.

In order to prove that Dλm(δ, λ) = l, it is enough to prove that

lim inf
h→0

m(δ, λ + h)−m(δ, λ)− l · h
|h|

≥ 0 , (2.7)

Let us prove (2.7) by contradiction. If (2.7) is false then ∃µ > 0 and a sequence (hn) → 0 such that

m(δ, λ + hn) < m(δ, λ) + l · hn − µ|hn| . (2.8)

Let xn ∈ M(δ, λ + hn) and ln := DλI(δ, λ + hn, xn) ∈ D(δ, λ + hn). By (2.4), written this time at
(δ, λ′) = (δ, λ + hn) and with h′ = −hn,

m(δ, λ) ≤ m(δ, λ + hn)− ln · hn +
K

2
|hn|2 . (2.9)

(2.8) and (2.9) imply that hn · ln −K|hn|2/2 < l · hn − µ|hn| and so(
ln − l

) hn

|hn|
− K

2
|hn| < −µ . (2.10)

Up to a subsequence (xn) → x ∈ M and by the continuity of DλI, (ln) → DλI(δ, λ, x). Since xn ∈
M(δ, λ + hn), we have ∀x′ ∈ M, I(δ, λ + hn, xn) ≤ I(δ, λ + hn, x′). Passing to the limits, we obtain that
x ∈M(δ, λ). Therefore DλI(δ, λ, x) belongs to D(δ, λ). Hence (ln) converges to l, the unique element of
D(δ, λ). Then, passing to the limit in (2.10), we obtain 0 < −µ, a contradiction.

In the following theorem, V1 denotes some finite dimensional euclidean vector space.

Theorem 2.2 Let Φ : [0, δ0]× B(1)× B(R;V1) 7→ R be a C2 map. Let S denote the unit sphere in V1.
Define I : [0, δ0]×B(1)× S 7→ R by

I(δ, λ, v) := sup
t∈[0,R]

Φ(δ, λ, tv) ,

the minimal value
m(δ, λ) := inf

v∈S
I(δ, λ, v)

and the minimizing set
M(δ, λ) :=

{
v ∈ S | I(δ, λ, v) = m(δ, λ)

}
6= ∅ .

We assume that:
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Assumption (MP) ∀v ∈ M(δ, λ), the map t 7→ Φ(δ, λ, tv) defined on [0, R] has a unique and non
degenerate maximum point t(δ, λ, v) ∈ (0, R).
Then:
(i) The “Mountain pass” set

K(δ, λ) :=
{

p(δ, λ, v) := t(δ, λ, v)v ; v ∈M(δ, λ)
}
⊂ B(R;V1)

is critical for Φ(δ, λ, ·) : B(R;V1) 7→ R and ∀ p ∈ K(δ, λ), Φ(δ, λ, p) = m(δ, λ).
(ii) m is continuous and differentiable almost everywhere with Dλm ∈ L∞((0, δ0)× intB(1)).
(iii) We have (Dλm)(δ, λ) ∈ BV ((0, δ0) × intB(1)) and (Dλm)(δ, λ) coincides a.e. with a function
(Dλm)(δ, λ) satisfying (

λ 7→ Var[0,δ0](Dλm)(·, λ)
)
∈ L1(intB(1)).

(iv) For (δ, λ) ∈ (0, δ0)× intB(1),

Dλm(δ, λ) exists ⇐⇒ D(δ, λ) :=
{

DλΦ(δ, λ, p) ; p ∈ K(δ, λ)
}

is a singleton; in this case DλΦ(δ, λ, p) = Dλm(δ, λ), ∀p ∈ K(δ, λ), i.e. D(δ, λ) = {Dλm(δ, λ)}.

Before proving Theorem 2.2, we notice that there are η > 0 and a C2 extension of Φ to the set
[−η, δ0 +η]×B(1+η)×B(R;V1), which we shall still denote by Φ. The maps I and m are thus extended
respectively on [−η, δ0 + η]×B(1 + η)× S and on [−η, δ0 + η]×B(1 + η).

We introduce the following notations:

Yη := [−η, δ0 + η]×B(1 + η)× S;

for y := (δ, λ, v) ∈ Yη, fy = fδ,λ,v : [0, R] 7→ R is defined by

fδ,λ,v(t) := Φ(δ, λ, tv);

at last

M :=
{

(δ, λ, v) ∈ [0, δ0]×B(1)×S | v ∈M(δ, λ)
}

=
{

(δ, λ, v) ∈ [0, δ0]×B(1)×S | I(δ, λ, v) = m(δ, λ)
}

.

We shall use the following lemmae where ||h||C2([0,R]) := supt∈[0,R] |h(t)|+ |h′(t)|+ |h′′(t)|.

Lemma 2.1 Suppose f : [0, R] 7→ R has a unique maximum point, which is in (0, R) and is nondegen-
erate. Then ∃µ > 0 such that any function g : [0, R] 7→ R such that ‖g − f‖C2[0,R] ≤ µ has a unique
maximum point, which is in (0, R) and is nondegenerate.

Proof. We have to prove that, if gn
C2[0,R]−→ f , then, for n large, gn has a unique and non degenerate

maximum point, in (0, R). Let us call tf ∈ (0, R) the unique maximum point of f . Select for each n a
maximum point sn ∈ [0, R] of gn.

Let s ∈ [0, R] be some accumulation point of (sn). We have ∀t ∈ [0, R], gn(sn) ≥ gn(t) and,
taking limits as n → +∞, we obtain that s is a maximum point of f . Hence the only accumulation
point of (sn) is tf , which implies that (sn) converges to tf . Hence, for n large, sn ∈ (0, R) and, since
limn→+∞ g′′n(sn) = f ′′(tf ) 6= 0, sn is a non degenerate maximum point of gn.

There remains to prove that sn is the unique maximum point of gn for n large. Arguing by contra-
diction, we assume (after extraction of a subsequence) that for all n, gn has a second maximum point tn.
We have lim tn = lim sn = tf and since g′n(tn) = g′n(sn) = 0, there is ξn ∈ (sn, tn) (or (tn, sn)) such that
g′′n(ξn) = 0. Since ξn → tf , we obtain f ′′(tf ) = 0, a contradiction.
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Lemma 2.2 Assume that Φ : [−η, δ +η]×B(1+η)×B(R, V1) 7→ R is C2 and let A be a compact subset
of Yη. For µ > 0 define

Aµ :=
{

y ∈ Yη | dist(y, A) < µ
}

.

Assume that ∀ y = (δ, λ, v) ∈ A the map fy(t) := Φ(δ, λ, tv) has a unique and non degenerate maximum
point t(y) ∈ (0, R). Then ∃µ > 0 such that ∀y ∈ Aµ the same property holds.

Proof. Let us first prove that if yn → y in Yη then fyn

C2[0,R]−→ fy.
Define the C2 function e : [0, R]× Yη 7→ R by

e(t, y) := Φ(δ, λ, tv) =: fy(t) .

The functions (t, y) 7→ ∂k
t e(t, y) = f

(k)
y (t), k = 0, 1, 2 , are uniformly continuous on the compact set

[0, R]×Yη and therefore f
(k)
yn (k = 0, 1, 2) converge uniformly on [0, R] to f

(k)
y as n →∞, i.e. fyn

C2[0,R]−→ fy.
Now, arguing by contradiction, we assume that the statement of Lemma 2.2 does not hold. Then

there is a sequence (yn) in Yη such that dist(yn, A) → 0 and ∀n, fyn
has not the desired property. Since

A is compact, after extraction of a subsequence, we may assume that yn → y ∈ A. Then fyn

C2[0,R]−→ fy,
and this is in contradiction with Lemma 2.1.

Proof of Theorem 2.2. Let us first check that the functions I and m are continuous. We have

|I(y)− I(y′)| =
∣∣∣ sup

t∈[0,R]

fy(t)− sup
t∈[0,R]

fy′(t)
∣∣∣ ≤ sup

t∈[0,R]

∣∣∣fy(t)− fy′(t)
∣∣∣.

Since e(t, y) := fy(t) is uniformly continuous on the compact set [0, R]× Yη, the function I is uniformly
continuous on Yη. Similarly, since∣∣∣m(δ, λ)−m(δ′, λ′)

∣∣∣ ≤ sup
v∈S

∣∣∣I(δ, λ, v)− I(δ′, λ′, v)
∣∣∣,

m is uniformly continuous on [−η, δ0 + η]×B(1 + η).
Since I is continuous and S is compact, I(δ, λ, ·) attains its infimum on S and hence M(δ, λ) 6= ∅.

Since I and m are continuous M := {(δ, λ, v) ∈ [0, δ0]×B(1)×S | I(δ, λ, v) = m(δ, λ)} is a closed subset
of [0, δ0]×B(1)× S. This latter set being compact, M too is compact.

By Assumption (MP), for any y = (δ, λ, v) ∈ M, the function fy(·) has a unique maximum point,
which is in (0, R) and it is nondegenerate. Hence, by Lemma 2.2, there is µ > 0 such that the same
property holds for any y ∈ Mµ, and, for (δ, λ, v) ∈ Mµ\M, we still call t(δ, λ, v) ∈ (0, R) the unique
(and nondegenerate) maximum point of the function fδ,λ,v : t 7→ Φ(δ, λ, tv). We have

∀(δ, λ, v) ∈Mµ , I(δ, λ, v) = Φ(δ, λ, t(δ, λ, v)v). (2.11)

(i) We first claim that the map t : Mµ 7→ (0, R) is C1. Indeed, for all (δ, λ, v) ∈ Mµ, t(δ, λ, v) is a
solution of the equation in t

f ′δ,λ,v(t) := (DvΦ)(δ, λ, tv)[v] = 0 (2.12)

and f ′δ,λ,v is C1. By non-degeneracy f ′′δ,λ,v(t(δ, λ, v)) 6= 0 and hence, by the Implicit function theorem,
the map (δ, λ, v) 7→ t(δ, λ, v) is C1.

As a consequence, by (2.11), I|Mµ
is C1. But

∂I

∂δ
(δ, λ, v) =

∂Φ
∂δ

(δ, λ, t(δ, λ, v)v) +
∂t

∂δ
(δ, λ, v)(DvΦ)(δ, λ, t(δ, λ, v)v)[v] =

∂Φ
∂δ

(δ, λ, t(δ, λ, v)v)

because t = t(δ, λ, v) satisfies (2.12). Similarly,

DλI(δ, λ, v) = DλΦ(δ, λ, t(δ, λ, v)v) (2.13)
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and, for h ∈ TvS,
DvI(δ, λ, v)[h] = t(δ, λ, v)DvΦ(δ, λ, t(δ, λ, v)v)[h]. (2.14)

Hence, the first order partial derivatives of I are in fact C1 on Mµ. Therefore

I|Mµ
is of class C2 . (2.15)

If v ∈M(δ, λ) then, ∀h ∈ TvS, (DvI)(δ, λ, v)[h] = 0. Therefore, by (2.12)-(2.14), if v ∈ M(δ, λ) then{
(DvΦ)(δ, λ, t(δ, λ, v)v)[h] = 0 ∀h ∈ TvS
(DvΦ)(δ, λ, t(δ, λ, v)v)[v] = 0

and, since V = TvS ⊕ 〈v〉, the point p(δ, λ, v) := t(δ, λ, v)v ∈ intB(R) is critical for Φ(δ, λ, ·). At last, if
p ∈ K(δ, λ) then there is v ∈M(δ, λ) such that p = t(δ, λ, v)v and Φ(δ, λ, p) = I(δ, λ, v) = m(δ, λ).

For (ii)-(iii)-(iv), we shall prove that there exists a C2 function I : (−η, δ0 +η)× B(1+η)×S 7→ R such
that

(a) I(δ, λ, v) ≡ I(δ, λ, v) in a neighborhood of the compact set M.

(b) For all (δ, λ) ∈ [0, δ0]×B(1), I(δ, λ, ·) : S 7→ R has the same minimal value as I(δ, λ, ·) : S 7→ R,

inf
v∈S

I(δ, λ, v) = inf
v∈S

I(δ, λ, v) = m(δ, λ)

which is attained on the same minimizing set{
v ∈ S | I(δ, λ, v) = m(δ, λ)

}
=

{
v ∈ S | I(δ, λ, v) = m(δ, λ)

}
= M(δ, λ) .

Assume for the time being that such a function I does exist. Then we may apply Theorem 2.1 to I (with
M = S), proving that the function m(δ, λ) satisfies properties (ii)-(iii). Moreover for (δ, λ, v) near M,
I(δ, λ, v) = I(δ, λ, v), hence by (2.13),

∀(δ, λ, v) ∈M, DλI(δ, λ, v) = DλI(δ, λ, v) = DλΦ(δ, λ, t(δ, λ, v)v). (2.16)

By (2.16) and Theorem 2.1, Dλm(δ, λ) exists iff the set{
DλI(δ, λ, v) ; v ∈M(δ, λ)

}
=

{
DλΦ(δ, λ, p) ; p ∈ K(δ, λ)

}
has a unique element l, and then Dλm(δ, λ) = l. This concludes the proof of (iv).

There remains to prove the existence of a function I which satisfies (a) and (b).
Mµ/4 and Mµ/2 are two open subsets of R ×RM × S such that Mµ/4 ⊂ Mµ/2. Hence there is a

C∞ function ϕ : R×RM × S 7→ [0, 1] such that

ϕ(δ, λ, v) =
{

1 ∀(δ, λ, v) ∈Mµ/4

0 ∀(δ, λ, v) ∈Mc
µ/2 .

Let T ∈ R be such that
sup

(δ,λ)∈[0,δ0]×B(1)

m(δ, λ) < T

and define the function I : (−η, δ0 + η)×B(1 + η)× S 7→ R by

I(δ, λ, v) := ϕ(δ, λ, v)I(δ, λ, v) + (1− ϕ(δ, λ, v))T . (2.17)

To complete the proof, let us check that I : (−η, δ0 + η)×B(1 + η)× S 7→ R is of class C2 and satisfies
(a) and (b).
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Since I(δ, λ, v) = T in U := (−η, δ0 + η) × B(1 + η) × S ∩Mµ/2
c
, I|U is C2. Furthermore I|Mµ

is
C2 as well, by the definition (2.17) and (2.15). Hence, {U,Mµ} being an open covering of (−η, δ0 + η)×
B(1 + η)×S, I is C2. Since I(δ, λ, v) ≡ I(δ, λ, v) in the open neighborhood Mµ/4 of M, (a) is satisfied.

Let (δ, λ) ∈ [0, δ0] × B(1). We have ∀v ∈ S, I(δ, λ, v) ≥ m(δ, λ), T > m(δ, λ) and ϕ(δ, λ, v) ∈ [0, 1].
Hence, by (2.17),

∀v ∈ S, I(δ, λ, v) ≥ m(δ, λ)

and

I(δ, λ, v) = m(δ, λ) ⇐⇒
{

I(δ, λ, v) = m(δ, λ)
ϕ(δ, λ, v) = 1 ⇐⇒ v ∈M(δ, λ) .

Hence I satisfies (b).

We shall also need the following Lemma which states that, if Assumption (MP ) is satisfied at δ = 0,
then it is satisfied for δ small, and which localizes the “mountain-pass” critical sets for δ small.

Lemma 2.3 Assume that Φ : [0, δ0]×B(1)×B(R;V1) 7→ R is C2, Φ(0, λ, v) = Φ0(v) is independent of
λ and that ∀v ∈ M(0, 0) (≡ M(0, λ)), the map f0,0,v : [0, R] 7→ R (defined by f0,0,v(t) := Φ0(tv)) has a
unique and nondegenerate maximum point t(0, 0, v) ∈ (0, R). Then, ∀ν > 0 there is δ′0 ∈ (0, δ0] such that
Φ|[0,δ′0]×B(1)×B(R;V1) satisfies Assumption (MP) and

∀(δ, λ) ∈ [0, δ′0]×B(1) ,∀p ∈ K(δ, λ), dist(p,K(0, 0)) < ν .

Proof. As previously, we shall still denote by Φ a C2 extension to [−η, δ0 + η]× B(1 + η)× B(R;V1)
for some η > 0. Define, for δ1 ∈ [0, δ0], the compact set

Mδ1 := M∩
(
[0, δ1]×B(1)× S

)
.

Since M0 is a compact subset of Yη, by Lemma 2.2, there exists µ > 0 such that fy has a unique
non degenerate maximum point in (0, R) for every y ∈ (M0)µ. Now, M being compact, any sequence
yn = (δn, λn, vn) in M such that δn → 0 has an accumulation point in M0. Hence there is δ1 > 0 such
that Mδ1 ⊂ (M0)µ, and Φ|[0,δ1]×B(1)×B(R;V1) satisfies Assumption (MP).

As justified in the proof of Theorem 2.2, the map y 7→ t(y) (the unique maximum point of fy) is C1 on
(M0)µ, hence uniformly continuous on the compact setMδ1 . Note that I(0, λ, v), m(0, λ) are independent
of λ. Hence M0 = {0} × B(1) × M̃ where M̃ := {v ∈ S | I(0, 0, v) = m(0, 0)}, t(0, λ, v) = t(0, 0, v)
∀λ, v ∈ M̃, and K(0, 0) = {t(0, 0, v)v ; v ∈ M̃} = K(0, λ). By the uniform continuity of (y 7→ t(y)),
∀ν > 0 there is µ ∈ (0, µ) such that if y = (δ, λ, v) ∈ Mδ1 ∩ (M0)µ, then dist(t(δ, λ, v)v,K(0, 0)) < ν.
Now if δ′0 ∈ [0, δ1) is small enough then Mδ′0 ⊂ Mδ1 ∩ (M0)µ and hence, for (δ, λ) ∈ [0, δ′0] × B(1) and
p ∈ K(δ, λ), dist(p,K(0, 0)) < ν.

3 The finite dimensional reduction

3.1 Variational properties of Ψ∞

Let G : V 7→ R be the homogeneous functional

G(v) :=
∫

Ω

ap(x)vp+1 , ∀v ∈ V .

For definiteness we shall assume that

∃ v ∈ V such that G(v) > 0

and so we choose s∗ = 1 (recall (1.23)).
Set S := {v ∈ V | ‖v‖H1 = 1} and Sr := {v ∈ V | ‖v‖H1 = r} for every r > 0.
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Lemma 3.1 The supremum m∞ := supv∈S G(v) > 0 is finite and the minimizing set M∞ := {v ∈
S | G(v) = m∞} is not empty and compact for the H1-topology.

Proof. The proof is as in Lemma 2.4 of [5]. For completeness we report it in the Appendix.

Lemma 3.2 The C∞-functional Ψ∞ : V 7→ R defined in (1.21) (with s∗ = 1)

Ψ∞(v) =
‖v‖2H1

2
− G(v)

p + 1

satisfies the following properties:

(i) ∀v ∈M∞, the function t 7→ Ψ∞(tv) possesses a nondegenerate maximum at

R∞ :=
( 1

m∞

) 1
p−1

with maximal value c∞ :=
(1

2
− 1

p + 1

)
R2
∞ . (3.1)

Moreover R∞ is the unique critical point of (t 7→ Ψ∞(tv)) in (0,∞).

(ii) minv∈SR∞
Ψ∞(v) = c∞ and the corresponding minimizing set is K∞ := {R∞v ; v ∈M∞} ⊂ SR∞ .

(iii) Moreover K∞ = {v ∈ V | dΨ∞(v) = 0 ,Ψ∞(v) = c∞}.

Proof. (i) For v ∈M∞ we have Ψ∞(tv) =
t2

2
− tp+1

(p + 1)
m∞ and an elementary calculus yields (3.1).

(ii) By the homogeneity of G and the definition of m∞

∀v ∈ SR∞ , Ψ∞(v) =
R2
∞
2

− Rp+1
∞

p + 1
G

( v

R∞

)
≥ R2

∞
2

− Rp+1
∞

p + 1
m∞ =

(1
2
− 1

p + 1

)
R2
∞ =: c∞

and we have
Ψ∞(v) = c∞ ⇐⇒ G

( v

R∞

)
= m∞ ⇐⇒ v

R∞
∈M∞ ⇐⇒ v ∈ K∞ .

Therefore the minimizing set of Ψ∞|SR∞
is K∞.

(iii) We now prove that K∞ is a critical set for Ψ∞. Let v ∈ K∞. By (ii), v is a minimum point of
Ψ∞ restricted to SR∞ and therefore

∀h ∈ V, 〈v, h〉H1 = 0 =⇒ dΨ∞(v)[h] = 0 . (3.2)

Moreover, by (i), the function (t 7→ Ψ∞(tv/R∞)) attains a maximum at t = R∞, and therefore

dΨ∞(v)[v] = 0 . (3.3)

By (3.2) and (3.3), v is a critical point of Ψ∞ : V 7→ R.
Reciprocally, assume that v is a critical point of Ψ∞ with Ψ∞(v) = c∞. Then

∀h ∈ V, 〈v, h〉H1 −
∫

Ω

ap(x)vph = 0 . (3.4)

Taking h = v in (3.4), we get ‖v‖2H1−G(v) = 0 and so Ψ∞(v) =
(1

2
− 1

p + 1

)
‖v‖2H1 . Since, by hypothesis,

Ψ∞(v) = c∞ =
(1

2
− 1

p + 1

)
R2
∞

we deduce ‖v‖H1 = R∞. By (ii) we conclude v ∈ K∞.
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Remark 3.1 Let v∞ ∈ V be such that Ψ∞(v∞) < 0. By the previous Lemma, c∞ can be characterized
as in (1.24), i.e. c∞ is a “Mountain-pass” critical level of Ψ∞, see [1].

Lemma 3.3 Let T (v) denote the minimal period in time of v ∈ V . There exists n0 ∈ N such that

min
v∈K∞

T (v) =
2π

n0
> 0 .

Proof. For any v ∈ V , there is a unique η ∈ H1(T;R), η odd, such that v(t, x) = η(t + x)− η(t− x)
and it is obvious that the minimal period in time of v is the minimal period of η. If the Lemma is
not true, there is a sequence vj ∈ K∞ with vj of minimal period 2π/nj , nj ∈ N, nj → +∞. We have
vj = ηj(nj(t + x)) − ηj(nj(t − x)) with ηj ∈ H1(T;R), ηj odd. As in the proof of Lemma 3.2-(iii),
‖vj‖2H1 = G(vj) and (1

2
− 1

p + 1

)
‖vj‖2H1 = c∞ =

(1
2
− 1

p + 1

)
G(vj) . (3.5)

Since ‖vj‖2H1 = 4πn2
j‖ηj‖2H1(T) we deduce by the first equality that ‖ηj‖L∞(T) ≤ C‖ηj‖H1(T) → 0 as

j → +∞. Hence G(vj) =
∫
Ω

ap(x)vp+1
j → 0 as j → +∞ contradicting the second equality in (3.5).

We shall look for periodic solutions of (1.5) in the subspace Xσ,s,n0 ⊂ Xσ,s of functions which are
2π/n0 periodic in time.

To avoid cumbersome notations we shall suppose that n0 = 1 (with no genuine loss of generality),
namely that 2π is the minimal period of each element v of K∞.

3.2 Choice of N in the decomposition V = V1 ⊕ V2

For the sequel of the paper we fix the constant

1
2

< s < 2 .

To estimate g(δ, λ, x, u) we need the following Lemma.

Lemma 3.4 There is a constant κ > 0 such that ∀σ ≥ 0

a) ∀ a(x) ∈ H1(0, π), ∀u ∈ Xσ,0, ‖au‖σ,0 ≤ κ‖a‖H1‖u‖σ,0

b) ∀u1, u2 ∈ Xσ,s, ‖u1u2‖σ,0 ≤ ‖u1u2‖σ,s ≤ κ‖u1‖σ,s‖u2‖σ,s

c) ∀v ∈ V ∩Xσ,0,∀u ∈ Xσ,0, ‖vu‖σ,0 ≤ κ‖v‖σ,0‖u‖σ,0

d) ∀u = v + w with v ∈ V ∩Xσ,0, w ∈ W ∩Xσ,s,

‖uk‖σ,0 ≤ κk−1
(
‖v‖σ,0 + ‖w‖σ,s

)k

. (3.6)

Proof. a) is a direct consequence of the definition of the norm ‖ ‖σ,0 and the fact that H1(0, π) is
an algebra. b) comes from the algebra property (1.7) of the spaces Xσ,s for s > 1/2. c) requires some
explanations. First define the complexified space

X̃σ,0 :=
{

ũ =
∑
l∈Z

eiltũl(x) | ũl ∈ H1
0 ((0, π);C), ‖u‖2σ,0 := 2π‖ũ0‖2H1

0
+ 4π

∑
l 6=0

e2σ|l|‖ũl‖2H1
0

< +∞
}

of the real space Xσ,0 defined in (1.6), and

Ṽ :=
{

v =
∑
l∈Z

eiltṽl sin(lx) | ‖v‖0,0 < +∞
}

,
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the complexified space of V defined in (1.8). Note that Xσ,0 ⊂ X̃σ,0 and that on Xσ,0, the two definitions
of the norm ‖ ‖σ,0 coincide.

Let us call ũ the unique continuous extension of u ∈ Xσ,0 to Sσ := {t ∈ C | |Im t| ≤ σ} that is analytic
w.r.t. t in intSσ. We define

L±σu(t, x) := ũ(t± iσ, x) =
∑
l∈Z

eil(t±iσ)ũl(x) =
∑
l∈Z

eilte∓σlũl(x) , t ∈ R

(the traces of ũ at the boundary of Sσ). We have L±σu ∈ X̃0,0 and the norm ‖u‖σ,0 is equivalent to the
norm ‖Lσu‖0,0 + ‖L−σu‖0,0 because

‖u‖σ,0 ≤
∥∥∥Lσu

∥∥∥
0,0

+
∥∥∥L−σu

∥∥∥
0,0

and
∥∥∥L±σu

∥∥∥
0,0
≤ ‖u‖σ,0 . (3.7)

We claim that c) is a consequence of the inequality

∀v ∈ Ṽ , ∀u ∈ X̃0,0 , ‖vu‖0,0 ≤ κ̃‖v‖0,0‖u‖0,0 (3.8)

for some κ̃ > 0. Indeed, if v ∈ Xσ,0 ∩ V , then L±σv ∈ X̃0,0 and so L±σv ∈ Ṽ . By (3.7) and (3.8)

‖vu‖σ,0 ≤ ‖Lσ(vu)‖0,0 + ‖L−σ(vu)‖0,0 = ‖Lσv Lσu‖0,0 + ‖L−σv L−σu‖0,0

≤ κ̃‖Lσv‖0,0‖Lσu‖0,0 + κ̃‖L−σv‖0,0‖L−σu‖0,0 ≤ κ‖v‖σ,0‖u‖σ,0

with κ = 2κ̃, using again (3.7).
To prove (3.8) note first that by the Parseval formula, X̃0,0 is isomorphic to the space of 2π-periodic

in time functions valued in H1
0 ((0, π);C) which are L2-square summable:

X̃0,0 ' L2(T,H1
0 ((0, π);C)) , ‖u‖20,0 ' ‖u‖2L2(T,H1

0 ((0,π);C)) .

The key point is now the following: for v =
∑

l∈Z eiltṽl sin(lx) ∈ Ṽ , the map (t 7→ v(t, ·)) is in
L∞(T,H1

0 ((0, π);C)) (and not only in L2(T,H1
0 ((0, π);C)), with

‖v‖L∞(T,H1
0 ((0,π);C)) ≤

1√
2π
‖v‖0,0 (3.9)

because, for any t,

‖v(t, ·)‖2H1
0

=
π

2

∑
l>0

l2|eiltṽl − e−iltṽ−l|2 ≤
π

2

∑
l>0

2l2(|ṽl|2 + |ṽ−l|2) =
1
2π
‖v‖20,0 < +∞ .

Therefore, if u ∈ X̃0,0 and v ∈ Ṽ , then by the algebra property of H1
0 (0, π),

‖vu‖0,0 ' ‖vu‖L2(T,H1
0 ((0,π);C) ≤ C‖v‖L∞(T,H1

0 ((0,π);C)‖u‖L2(T,H1
0 ((0,π);C)

≤ κ̃‖v‖0,0‖u‖0,0

by (3.9). This proves (3.8).
For d) we first notice that, by a simple iteration on j, property c) entails

‖vju‖σ,0 ≤ κj‖v‖j
σ,0‖u‖σ,0 , ∀j ∈ N , ∀u ∈ X̃0,0 , ∀v ∈ Ṽ . (3.10)

Using the binomial development formula, (3.10) and b), we obtain, for u = v + w, v ∈ V ∩Xσ,0,

‖uk‖σ,0 =
∥∥∥(v + w)k

∥∥∥
σ,0

=
∥∥∥ k∑

j=0

Cj
kvjwk−j

∥∥∥
σ,0

≤
k∑

j=0

Cj
k‖v

jwk−j‖σ,0

≤
k∑

j=0

Cj
kκj‖v‖j

σ,0‖wk−j‖σ,0 ≤
k∑

j=0

Cj
kκj‖v‖j

σ,0‖wk−j‖σ,s

≤
k∑

j=0

Cj
kκj‖v‖j

σ,0κ
k−j−1‖w‖k−j

σ,s = κk−1
(
‖v‖σ,0 + ‖w‖σ,s

)k

18



proving (3.6).

As a consequence we get the following estimate for Nemistky operator g(δ, λ, x, ·).

Lemma 3.5 For u = v + w with v ∈ V ∩Xσ,0, w ∈ W ∩Xσ,s∥∥∥g(δ, λ, x, u)
∥∥∥

σ,0
≤ κp(‖v‖σ,0 + ‖w‖σ,s)p

[
‖ap‖H1 +

∑
k>p

‖ak(λ, x)‖H1

(
δκ(‖v‖σ,0 + ‖w‖σ,s)

)k−p]
.

Proof. Using (1.11) and Lemma 3.4∥∥∥g(δ, λ, x, v + w)
∥∥∥

σ,0
=

∥∥∥ap(x)(v + w)p +
∑
k>p

ak(λ, x)δk−p(v + w)k
∥∥∥

σ,0

≤ κ‖ap‖H1‖(v + w)p‖σ,0 +
∑
k>p

κ‖ak(λ, x)‖H1δk−p
∥∥∥(v + w)k

∥∥∥
σ,0

≤ κp‖ap‖H1(‖v‖σ,0 + ‖w‖σ,s)p +
∑
k>p

‖ak(λ, x)‖H1δk−pκk
(
‖v‖σ,0 + ‖w‖σ,s

)k

= κp(‖v‖σ,0 + ‖w‖σ,s)p
[
‖ap‖H1 +

∑
k>p

‖ak(λ, x)‖H1

(
δκ(‖v‖σ,0 + ‖w‖σ,s)

)k−p]
.

The infinite sums above are convergent for δ small enough by the analyticity assumption (1.9).

Set
G(δ, λ, v1, w, v2) := (−∆)−1ΠV2g(δ, λ, x, v1 + v2 + w) . (3.11)

For u =
∑

l≥0 cos(lt)ul(x) =
∑

l≥0 cos(lt)
( ∑

j≥1 ulj sin(jx)
)
∈ X0,0, we have

(−∆)−1ΠV2u = (−∆)−1
∑

l≥N+1

cos(lt)ull sin(lx) =
∑

l≥N+1

ull

2l2
cos(lt) sin(lx) .

Hence if u ∈ Xσ,0 then (−∆)−1ΠV2u ∈ Xσ,s ∩ V and∥∥∥(−∆)−1ΠV2u
∥∥∥2

σ,s
≤ π

∑
l≥N+1

e2σl l
2s + 1
4l4

‖ul‖2H1
0
≤
‖u‖2σ,0

N4−2s
. (3.12)

Lemma 3.6 There exist C0 > 0, C1 > 0, depending only on ap, and δ0, depending only on f , such that:

∀σ ≥ 0 , ∀|λ| ≤ 1 , ∀δ ∈ [0, δ0] , ∀‖v1‖σ,0 ≤ 4R∞ , ∀‖w‖σ,s ≤ R∞ , ∀‖v2‖σ,0 ≤ R∞ ,∥∥∥G(δ, λ, v1, w, 0)
∥∥∥

σ,s
≤ C0

N2−s

(
‖v1‖σ,0 + ‖w‖σ,s

)p

(3.13)∥∥∥Dv2G(δ, λ, v1, w, v2)[h]
∥∥∥

σ,s
≤ C1

N2−s

(
‖v1‖σ,0 + ‖v2‖σ,0 + ‖w‖σ,s

)p−1

‖h‖σ,0 , ∀h ∈ V2 ∩Xσ,0 . (3.14)

Proof. By Lemma 3.5, for ‖v1‖σ,0 + ‖w‖σ,s ≤ 5R∞,∥∥∥g(δ, λ, x, v1 + w)
∥∥∥

σ,0
≤ κp

(
‖v1‖σ,0 + ‖w‖σ,s

)p[
‖ap‖H1 +

∑
k>p

‖ak(λ, x)‖H1(δκ5R∞)k−p
]

≤ κp
(
‖v1‖σ,0 + ‖w‖σ,s

)p

2‖ap‖H1 (3.15)

choosing 0 ≤ δ ≤ δ0 := δ0(f,R∞) small enough such that∑
k>p

‖ak(λ, x)‖H1

(
δ0κ5R∞

)k−p

≤ ‖ap‖H1 , ∀|λ| ≤ 1
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(such a δ0 exists by assumption (1.9)). Since R∞ is defined from ap, δ0 depends only on f . By (3.12),(3.15)∥∥∥G(δ, λ, v1, w, 0)
∥∥∥

σ,s
=

∥∥∥(−∆)−1ΠV2g(δ, λ, x, v1 + w)
∥∥∥

σ,s
≤ 1

N2−s

∥∥∥g(δ, λ, x, v1 + w)
∥∥∥

σ,0

≤ 2κp‖ap‖H1

N2−s

(
‖v1‖σ,0 + ‖w‖σ,s

)p

proving (3.13) with C0 := 2κp‖ap‖H1 . We can obtain (3.14) in a similar way.

Lemma 3.7 There exists N∞ := N∞(K∞) ∈ N+, depending only on K∞, such that ∀N ≥ N∞∥∥∥ΠV1v
∥∥∥

0,0
≥ 2

∥∥∥ΠV2v
∥∥∥

0,0
, ∀v ∈ K∞ . (3.16)

Proof. K∞ being compact, we have

lim
N→+∞

sup
v∈K∞

∥∥∥ΠV2(N)v
∥∥∥

0,0
= 0.

Choose N∞ such that

∀N ≥ N∞, ∀v ∈ K∞,
∥∥∥ΠV2v

∥∥∥
0,0
≤ R∞

3
. (3.17)

By Lemma 3.2, we have ‖v‖0,0 = R∞ if v ∈ K∞. Hence

∀N ≥ N∞, ∀v ∈ K∞,
∥∥∥ΠV1v

∥∥∥
0,0
≥ ‖v‖0,0 −

∥∥∥ΠV2v
∥∥∥

0,0
≥ 2R∞

3
≥ 2

∥∥∥ΠV2v
∥∥∥

0,0

using (3.17).

Now we fix for the sequel of the paper the dimension N ∈ N of the finite dimensional subspace V1

such that
C0

N
2−s (5R∞)p ≤ R∞

4
,

C1

N
2−s (6R∞)p−1 ≤ 1

4
(3.18)

and N ≥ N∞ given by Lemma 3.7 so that (3.16) holds.
We underline that since C0, C1, R∞ and the set K∞ depend only on ap, N too depends only on ap.

4 Solution of the (Q2)-equation

Let
σ :=

ln 2
N

. (4.1)

We shall use the notation B(R;Vi) :=
{

vi ∈ Vi | ‖vi‖0,0 ≤ R
}

.

Proposition 4.1 (Solution of the (Q2)-equation)

∀σ ∈ [0, σ] , ∀δ ∈ [0, δ0] , ∀|λ| ≤ 1 , ∀v1 ∈ B(2R∞;V1) , ∀w ∈ W ∩Xσ,s with ‖w‖σ,s ≤ R∞

with δ0 defined by Lemma 3.6.
a) there exists a unique solution v2(δ, λ, v1, w) of the (Q2)-equation in {v2 ∈ V2 | ‖v2‖σ,0 ≤ R∞}. It
satisfies ‖v2(δ, λ, v1, w)‖σ,s ≤ R∞/2.
b) ∀ v ∈ K∞, ∀λ ∈ B(1), we have ΠV2v = v2(0, λ,ΠV1v, 0).

c) Ψ∞
(
v1 + v2(0, 0, v1, 0)

)
= minv2∈B(R∞;V2) Ψ∞(v1 + v2).
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d) v2(δ, λ, v1, w) ∈ Xσ,s+2 and

v2(·, ·, ·, ·) ∈ C∞
(
[0, δ0]×B(1)×B(2R∞;V1)×B(R∞;W ∩Xσ,s), V2 ∩Xσ,s+2

)
.

Moreover all the derivatives of v2 are bounded on [0, δ0]×B(1)×B(2R∞;V1)×B(R∞;W ∩Xσ,s).
e) If in addition ‖w‖σ,s′ < +∞ for some s′ ≥ s, then (provided δ0 is small enough) ‖v2(δ, λ, v1, w)‖σ,s′+2 ≤
K(s′, ‖w‖σ,s′).

Proof. We shall use the notation Yσ := [0, δ0] × B(1) × B(2R∞;V1) × B(R∞;W ∩ Xσ,s) and y =
(δ, λ, v1, w) will denote an element of Yσ.

We look for fixed points v2 ∈ B2,σ := {v2 ∈ V2 | ‖v2‖σ,0 ≤ R∞} of the nonlinear operator

G(y, ·) = G(δ, λ, v1, w, ·) : V2 ∩Xσ,0 7→ V2 ∩Xσ,0

defined in (3.11).
a) We now prove that ∀σ ∈ [0, σ], ∀y ∈ Yσ, the operator G(y, ·) sends B2,σ into B2,σ and is a contraction.

∀v1 ∈ B(2R∞;V1), ∀σ ∈ [0, σ] we have

‖v1‖σ,0 ≤ eσN‖v1‖0,0 ≤ eσN2R∞ = 4R∞ (4.2)

by the definition of σ in (4.1). Hence by (3.13) and the choice of N in (3.18), we get ∀σ ∈ [0, σ], ∀y ∈ Yσ,∥∥∥G(y, 0)
∥∥∥

σ,s
≤ C0

N
2−s

(
‖v1‖σ,0 + ‖w‖σ,s

)p

≤ C0

N
2−s (4R∞ + R∞)p ≤ R∞

4
(4.3)

and ∀v2 ∈ B2,σ, ∀h ∈ V2 ∩Xσ,s, by (3.14) and (3.18),∥∥∥Dv2G(y, v2)h
∥∥∥

σ,s
≤ C1

N
2−s

(
‖v1‖σ,0 + ‖v2‖σ,0 + ‖w‖σ,s

)p−1

‖h‖σ,0

≤ C1

N
2−s (6R∞)p−1‖h‖σ,0 ≤

‖h‖σ,0

4
. (4.4)

By (4.4) and the mean value theorem ∀ v2, v
′
2 ∈ B2,σ∥∥∥G(y, v2)− G(y, v′2)

∥∥∥
σ,0

≤
∥∥∥G(y, v2)− G(y, v′2)

∥∥∥
σ,s

≤ 1
4
‖v2 − v′2‖σ,0 . (4.5)

By (4.3) and (4.5), ∀v2 ∈ B2,σ∥∥∥G(y, v2)
∥∥∥

σ,0
≤

∥∥∥G(y, v2)
∥∥∥

σ,s
≤ ‖G(y, 0)‖σ,s + ‖G(y, v2)− G(y, 0)‖σ,s

≤ R∞
4

+
‖v2‖σ,0

4
≤ R∞

2
. (4.6)

By (4.6) and (4.5) the operator G(y, ·) : B2,σ 7→ B2,σ is a contraction and therefore it has a unique fixed
point v2(y) ∈ B2,σ. Actually we have proved in (4.6) that G(y, ·) : B2,σ 7→ {‖v2‖σ,s ≤ R∞/2} and so
‖v2(y)‖σ,s = ‖G(y, v2(y))‖σ,s ≤ R∞/2.
b) If v ∈ K∞ then ‖v‖0,0 = ‖v‖H1 = R∞ and so ‖ΠViv‖0,0 ≤ R∞, i = 1, 2. Since ΠV2v solves the
(Q2)-equation with δ = 0, w = 0, namely

ΠV2v = (−∆)−1ΠV2

(
ap(x)(ΠV1v + ΠV2v)p

)
,

by the uniqueness property in a) (for σ = 0) ΠV2v ≡ v2(0, λ,ΠV1v, 0).
c) Let us define the functional

Sv1 : B(R∞;V2) 7→ R by Sv1(v2) := Ψ∞(v1 + v2) .
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Its differential is

dSv1(v2)[h] = dΨ∞(v1 + v2)[h] = 〈v2, h〉H1 −
∫

Ω

ΠV2

(
ap(x)(v1 + v2)p

)
h

= 〈v2, h〉H1 −
〈
(−∆)−1ΠV2

(
ap(x)(v1 + v2)p

)
, h

〉
H1

= 〈v2 − G(0, 0, v1, 0, v2), h〉H1 , ∀h ∈ V2

where we recall that 〈v, h〉H1 :=
∫
Ω

vtht + vxhx.
By the point a) for σ = 0, ∀v1 ∈ B(2R∞;V1), v2(0, 0, v1, 0) is a solution of v2 = G(0, 0, v1, 0, v2) and

satisfies ‖v2(0, 0, v1, 0)‖0,0 ≤ R∞. Therefore v2(0, 0, v1, 0) is a critical point of Sv1 in B(R∞;V2).
Furthermore, ∀v1 ∈ B(2R∞;V1), ∀v2 ∈ B(R∞;V2), by (4.4) (with σ = 0, w = 0)

D2Sv1(v2)[h, h] = ‖h‖2H1 − 〈Dv2G(0, 0, v1, 0, v2)h, h〉H1

≥ ‖h‖20,0 − ‖Dv2G(0, 0, v1, 0, v2)h‖0,0‖h‖0,0 ≥
3
4
‖h‖20,0

(recall that ‖h‖H1 = ‖h‖0,0). Hence the functional Sv1 is strictly convex on B(R∞;V2). As a consequence
v2(0, 0, v1, 0)) is the unique minimum point of Sv1 on B(R∞;V2).
The proof of d) is in the Appendix. The proof of e) is exactly as in Lemma 2.1-d) of [6].

Remark 4.1 We need to solve the (Q2)-equation ∀v1 ∈ B(2R∞;V1) because the solutions of the (Q1)-
equation that we shall obtain in section 6 will be close to K0 = ΠV1K∞ which is contained in B(2R∞;V1).

5 Solution of the (P )-equation

We are now reduced to solve the (P )-equation with v2 = v2(δ, λ, v1, w), namely

Lωw = εΠW Γ(δ, λ, v1, w) (5.1)

where
Γ(δ, λ, v1, w) := g

(
δ, λ, x, v1 + v2(δ, λ, v1, w) + w

)
.

5.1 The Nash-Moser type Theorem

By the Nash-Moser type Implicit Function Theorem of [6] we have

Proposition 5.1 (Solution of the (P )-equation) Fix γ ∈ (0, 1), τ ∈ (1, 2). For δ0 > 0 small enough
there exists

w̃ ∈ C∞
(
[0, δ0]×B(1)×B(2R∞;V1),W ∩Xσ/2,s

)
satisfying, ∀k ∈ N, ∥∥∥Dk

λ,v1
w̃(δ, λ, v1)

∥∥∥
σ/2,s

≤ εC(k) ,
∥∥∥Dkw̃(δ, λ, v1)

∥∥∥
σ/2,s

≤ C(k) (5.2)

and a Cantor set B∞ ⊂ [0, δ0]×B(1)×B(2R∞;V1), B∞ 6= ∅, such that

∀(δ, λ, v1) ∈ B∞ , w̃(δ, λ, v1) solves the (P )−equation (5.1) .

The Cantor set B∞ is explicitely

B∞ :=
{

(δ, λ, v1) ∈ [0, δ0]×B(1)×B(2R∞;V1) :
∣∣∣ωl − j − ε

M(δ, λ, v1, w̃(δ, λ, v1))
2j

∣∣∣ ≥ 2γ

(l + j)τ
,

|ωl − j| ≥ 2γ

(l + j)τ
, ∀ l, j ∈ N, l ≥ 1

3ε
, l 6= j , (1− 4ε)l ≤ j ≤ (1 + 4ε)l

}
(5.3)
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where ω =
√

1 + 2s∗δp−1, ε = δp−1 and

M(δ, λ, v1, w) :=
1
|Ω|

∫
Ω

(∂ug)
(
δ, λ, x, v1 + w + v2(δ, λ, v1, w)

)
.

Moreover, if (δ, λ, v1) /∈ B∞, then w̃(δ, λ, v1) solves the (P )-equation up to exponentially small remainders:
there exist α > 0, such that, ∀ 0 < δ ≤ δ0,

εr(δ, λ, v1) := Lωw̃(δ, λ, v1)− εΠW Γ(δ, λ, v1, w̃(δ, λ, v1))

satisfies ∀(δ, λ, v1) ∈ [0, δ0]×B(1)×B(2R∞;V1),∥∥∥r(δ, λ, v1)
∥∥∥

σ/4,s
≤ C ′ exp

(
− C

δα

)
. (5.4)

Proof. The proof is as in [6], the only difference being the dependence on the parameters λ. The
estimate on the derivatives w.r.t. (λ, v1) in the left hand side of (5.2) comes out from (51)-(52) of Lemma
3.2 in [6]. Only the derivatives w.r.t. δ might not be O(ε).

In the Appendix we give the proof of property (5.4) which was just stated in remark 3.4 of [6].

5.2 Measure estimate

Proposition 5.2 Let V1 : (0, δ0] 7→ B(2R∞;V1) be a function satisfying:

∀δ ∈ (0, δ0], Var[δ/2,δ]∩EV1 ≤
C2

δq
(5.5)

for some measurable set E ⊂ (0, δ0], q ∈ N and C2 > 0. Then, given λ ∈ B(1), the complementary of the
Cantor set

Cλ :=
{

δ ∈ [0, δ0] | (δ, λ,V1(δ)) ∈ B∞

}
(5.6)

satisfies

lim
δ→0

meas(Cc
λ ∩ [0, δ] ∩ E)

δ
= 0 . (5.7)

Proof. By the explicit expression of B∞ in Proposition 5.1

Cλ =
{

δ ∈ [0, δ0]
∣∣∣ |ωl − j| ≥ γ

(l + j)τ
,

∣∣∣ωl − j − ε
M(δ)

2j

∣∣∣ ≥ γ

(l + j)τ

∀ l ≥ 1
3ε

, l 6= j , (1− 4ε)l ≤ j ≤ (1 + 4ε)l
}

where M(δ) := M(δ, λ,V1(δ), w̃(δ, λ,V1(δ))).
Step 1: bound on the variations of M(δ)
The function M̄(δ, λ, v1) := M(δ, λ, v1, w̃(δ, λ, v1)) verifies the Lipschitz condition∣∣∣M̄(δ, λ, v1)− M̄(δ′, λ, v′1)

∣∣∣ ≤ L1

(
|δ − δ′|+ |v1 − v′1|

)
because the gradients of M and w̃ are bounded on bounded sets. Hence M(δ) = M̄(δ, λ,V1(δ)) satisfies

∀δ, δ′ ∈ [0, δ0) ,
∣∣∣M(δ)−M(δ′)

∣∣∣ ≤ L1

(
|δ − δ′|+ |V1(δ)− V1(δ′)|

)
,

implying, by (5.5), ∀δ ∈ (0, δ0],

Var[δ/2,δ]∩EM ≤ L1

(δ

2
+ Var[δ/2,δ]∩EV1

)
≤ L1

(δ

2
+ C2δ

−q
)
≤ C ′2δ

−q (5.8)
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where C ′2 := L1(δ
q+1
0 /2 + C2).

Now, for δ1 ∈ (0, δ0], define

Eδ1 :=
{

l ≥ 1
3δp−1

1

, l 6= j , (1− 4δp−1
1 )l ≤ j ≤ (1 + 4δp−1

1 )l
}

,

Rδ1 :=
{

δ ∈
[δ1

2
, δ1

]
| ∃(l, j) ∈ Eδ1 s.t. |ωl − j| < γ

(l + j)τ

}
and

Sδ1 :=
{

δ ∈
[δ1

2
, δ1

]
| ∃(l, j) ∈ Eδ1 s.t.

∣∣∣ωl − j − εM(δ)
2j

∣∣∣ <
γ

(l + j)τ

}
.

The complementary set of Cλ satisfies

Cc
λ ∩

[δ1

2
, δ1

]
⊂ Rδ1 ∪ Sδ1 .

We shall prove that(
∀δ ∈ (0, δ0], Var[δ/2,δ]∩EM ≤ C2

δq

)
=⇒ lim

δ1→0

meas(Sδ1 ∩ E)
δ1

= 0 . (5.9)

As a particular case, we obtain also limδ1→0 meas(Rδ1 ∩ E)/δ1 = 0, implying that

meas(Cc
λ ∩ [δ1/2, δ1] ∩ E)

δ1
=: µ(δ1) → 0 as δ1 → 0 .

Now, defining µ̃(δ1) := meas(Cc
λ ∩ [0, δ1] ∩ E)/δ1, we have

µ̃(δ1) = µ(δ1) +
µ̃(δ1/2)

2
,

from which we deduce

l := lim sup
δ1→0

µ̃(δ1) ≤ lim sup
δ1→0

µ(δ1) + lim sup
δ1→0

µ̃(δ1/2)
2

=
l

2

because limδ1→0 µ(δ1) = 0. Hence 0 ≤ l ≤ l/2 and so l = 0, implying (5.7).

The remaining part of the proof is devoted to (5.9). Write

Sδ1 =
⋃

(l,j)∈Eδ1

Sδ1,l,j where Sδ1,l,j :=
{

δ ∈
[
δ1/2, δ1

]
|
∣∣∣ωl − j − εM(δ)

2j

∣∣∣ <
γ

(l + j)τ

}
.

Step 2: bound on the diameter of Sδ1,l,j

Assume a, b ∈ Sδ1,l,j with (l, j) ∈ Eδ1 . Then∣∣∣l√1 + 2δp−1 − j − δp−1M(δ)
2j

∣∣∣ <
γ

(l + j)τ

both for δ = a and δ = b. Hence∣∣∣l√1 + 2ap−1 − ap−1M(a)
2j

− l
√

1 + 2bp−1 +
bp−1M(b)

2j

∣∣∣ <
2γ

(l + j)τ

and ∣∣∣√1 + 2ap−1 −
√

1 + 2bp−1
∣∣∣ <

2γ

l(l + j)τ
+ bp−1 |M(a)−M(b)|

2jl
+

∣∣∣bp−1 − ap−1
∣∣∣ |M(a)|

2jl
. (5.10)
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Since a, b ∈ [δ1/2, δ1], for δ1 small enough,∣∣∣√1 + 2ap−1 −
√

1 + 2bp−1
∣∣∣ ≥ C(p)δp−2

1 |b− a| . (5.11)

Still for δ1 small enough,∣∣∣bp−1 − ap−1
∣∣∣ |M(a)|

2jl
≤ Cδp−2

1 |a− b|
sup[0,δ1] |M |

jl
≤ C(p)

2
|a− b|δp−2

1 , (5.12)

because l ≥ 1/3δp−1
1 . By (5.10), (5.11) and (5.12) we get

∀(a, b) ∈ Sδ1,l,j , |a− b| ≤ C
( γ

lτ+1δp−2
1

+ δ1
|M(a)−M(b)|

2jl

)
(5.13)

and therefore

meas(Sδ1,l,j) ≤
C

δp−2
1

( γ

lτ+1
+

δp−1
1

jl

)
, (5.14)

since M is bounded. .

Define
E(1)

δ1
:=

{
(l, j) ∈ Eδ1 |

1
3δp−1

1

≤ l ≤ 1

δβ
1

}
, E(2)

δ1
:=

{
(l, j) ∈ Eδ1 |

1

δβ
1

< l
}

,

where β := p− 1 + q
2 and

S(1)
δ1

:=
⋃

(l,j)∈E(1)
δ1

Sδ1,l,j , S(2)
δ1

:=
⋃

(l,j)∈E(2)
δ1

Sδ1,l,j ,

so that Sδ1 = S(1)
δ1
∪ S(2)

δ1
.

Step 3 : Measure estimate of S(1)
δ1

By (5.14), for l given,

meas
( ⋃

(1−4δp−1
1 )l≤j≤(1+4δp−1

1 )l

Sδ1,l,j

)
≤ 8lδp−1

1

C

δp−2
1

( γ

lτ+1
+

δp−1
1

(1− 4δp−1
1 )l2

)
≤ C ′δ1

[ γ

lτ
+

δp−1
1

l

]
.

Hence

meas(S(1)
δ1

) ≤ C ′δ1

[1/δβ
1 ]∑

l=[1/3δp−1
1 ]

[ γ

lτ
+

δp−1
1

l

]
≤ γC(τ)δ(p−1)(τ−1)+1

1 + C(β)δp
1 | ln(δ1)| . (5.15)

Step 4 : Measure estimate of S(2)
δ1
∩ E

We shall prove
meas(S(2)

δ1
∩ E) ≤ C

∑
(l,j)∈E(2)

δ1

γ

δp−2
1 lτ+1

+ δ1+2β
1 Var[δ1/2,δ1]∩EM . (5.16)

For F ⊂ E(2)
δ1

we shall use the notation Wδ1,F := ∪(l,j)∈FSδ1,l,j . It is enough to prove that, for any

finite subset F of E(2)
δ1

, for any closed interval I ⊂ [δ1/2, δ1],

meas(Wδ1,F ∩ I ∩ E) ≤ C
∑

(l,j)∈F

γ

δp−2
1 lτ+1

+ δ1+2β
1 VarI∩EM . (5.17)
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We shall prove (5.17) by induction on the cardinality [F ]. First assume that [F ] = 1. Let (l0, j0) be the
unique element of F and let I be some closed interval of [δ1/2, δ1]. We have to prove that

meas(Sδ1,l0,j0 ∩ I ∩ E) ≤ C
γ

δp−2
1 lτ+1

0

+ Cδ1+2β
1 VarI∩EM . (5.18)

Let a := inf Sδ1,l0,j0 ∩ I ∩ E, b := supSδ1,l0,j0 ∩ I ∩ E (if Sδ1,l0,j0 ∩ I ∩ E is empty the inequality (5.18)
is trivial). There are sequences (an) and (bn) in Sδ1,l0,j0 ∩ I ∩ E converging respectively to a and b. By
(5.13)

bn−an ≤
Cγ

δp−2
1 lτ+1

0

+Cδ1
|M(an)−M(bn)|

2j0l0
≤ Cγ

δp−2
1 lτ+1

0

+Cδ1
VarI∩EM

2j0l0
≤ Cγ

δp−2
1 lτ+1

0

+Cδ1+2β
1 VarI∩EM,

since l0 > 1/2δβ
1 , j0 ≥ (1− 4δp−1

1 )l0. Taking limits, we get

b− a ≤ Cγ

δp−2
1 lτ+1

0

+ Cδ1+2β
1 VarI∩EM.

Since Sδ1,l0,j0 ∩ I ∩ E ⊂ [a, b], (5.18) holds.

We now assume that (5.17) holds for any F ⊂ E(2)
δ1

such that [F ] ≤ k and for any closed interval I.
Let [F ] = k+1 and let I = [c, d] be some closed subinterval of [δ1/2, δ1]. Note that if there exist (l, j) ∈ F
such that Sδ1,l,j ∩ I ∩ E = ∅, then (5.17) is a consequence of the induction hypothesis. If not, define as
above for (l, j) ∈ F ,

al,j := inf Sδ1,l,j ∩ I ∩ E , bl,j := supSδ1,l,j ∩ I ∩ E .

Select (l0, j0) ∈ F such that bl0,j0−al0,j0 = max(l,j)∈F bl,j−al,j . To simplify notations, we set a := al0,j0 ,
b := bl0,j0 . Note that, by the same arguments as above, a and b satisfy

b− a ≤ Cγ

δp−2
1 lτ+1

0

+ Cδ1+2β
1 Var[a,b]∩EM . (5.19)

By the choice of (l0, j0), for any (l, j) ∈ F it results bl,j ≤ bl0,j0 or al,j ≥ al0,j0 .
Hence we can define F1, F2 ⊂ F such that F1 ∪ F2 = F\{(l0, j0)}, F1 ∩ F2 = ∅ and

• if (l, j) ∈ F1 then Sδ1,l,j ∩ [c, d] ∩ E ⊂ [c, b];

• if (l, j) ∈ F2 then Sδ1,l,j ∩ [c, d] ∩ E ⊂ [a, d].

Hence

Wδ1,F ∩ [c, d] ∩ E ⊂
(
Wδ1,F1 ∩ [c, b] ∩ E

)
∪ [a, b] ∪

(
Wδ1,F2 ∩ [a, d] ∩ E

)
=

(
Wδ1,F1 ∩ [c, a] ∩ E

)
∪ [a, b] ∪

(
Wδ1,F2 ∩ [b, d] ∩ E

)
and, using (5.19) and the induction hypothesis with the sets F1, F2 and the closed intervals I1 = [c, a],
I2 = [b, d], we obtain

meas
(
Wδ1,F ∩ I ∩ E

)
≤ meas

(
Wδ1,F1 ∩ [c, a] ∩ E

)
+ (b− a) + meas

(
Wδ1,F2 ∩ [b, d] ∩ E

)
≤

( ∑
(l,j)∈F1

Cγ

δp−2
1 lτ+1

+ Cδ1+2β
1 Var[c,a]∩EM

)
+

( Cγ

δp−2
1 lτ+1

0

+ Cδ1+2β
1 Var[a,b]∩EM

)
+

( ∑
(l,j)∈F2

Cγ

δp−2
1 lτ+1

+ Cδ1+2β
1 Var[b,d]∩EM

)
≤

∑
(l,j)∈F

Cγ

δp−2
1 lτ+1

+ Cδ1+2β
1 Var[c,d]∩EM
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because Var[c,a]∩EM+ Var[a,b]∩EM+ Var[b,d]∩EM ≤ Var[c,d]∩EM . This completes the proof of (5.17).

Step 5 : Proof of (5.9).

By (5.15), (5.16) and (5.8)

meas(Sδ1 ∩ E) ≤ C
[
γδ

(p−1)(τ−1)+1
1 + δp

1 | ln(δ1)|+
∑

l≥[1/δβ
1 ]

γδp−1
1 l

δp−2
1 lτ+1

+ δ1+2β
1 Var[δ1/2,δ1]∩EM

]
≤ C ′

[
δ
(p−1)(τ−1)+1
1 + δp

1 | ln(δ1)|+ δ
1+(τ−1)[(p−1)+q/2]
1 + δ2p−1

1

]
since β := p− 1 + q/2. Hence limδ1→0 meas(Sδ1 ∩ E)/δ1 = 0 (recall that p ≥ 2).

Proposition 5.2 has the following straightforward consequence

Corollary 5.1 Given λ ∈ B(1), assume that there are C2 > 0 and measurable sets E1, . . . , En ⊂ (0, δ0]
such that

meas([0, δ0]\ ∪ Ej) = 0 (5.20)

and
∀j, ∀δ ∈ (0, δ0], Var[δ/2,δ]∩Ej

V1 ≤
C2

δq
. (5.21)

Then the Cantor set Cλ defined in (5.6) has asymptotically full measure at δ = 0, i.e. satisfies

lim
δ→0

meas(Cλ ∩ [0, δ])
δ

= 1 .

6 Variational solution of the (Q1)-equation

We have now to solve the finite dimensional (Q1)-equation

−∆v1 = ΠV1G(δ, λ, v1) (6.1)

where
G(δ, λ, v1) := g

(
δ, λ, x, v1 + v2(δ, λ, v1, w̃(δ, λ, v1)) + w̃(δ, λ, v1)

)
.

We need solutions v1(δ, λ) of (6.1) such that (δ, λ, v1(δ, λ)) belong to the Cantor set B∞.

6.1 The reduced action functional

By Propositions 4.1 and 5.1 we can define, for δ0 small enough, the “reduced Lagrangian action functional”
Φ̃ : [0, δ0]×B(1)×B(2R∞;V1) 7→ R by

Φ̃(δ, λ, v1) := Ψ
(
δ, λ, v1 + v2(δ, λ, w̃(δ, λ, v1)) + w̃(δ, λ, v1)

)
(6.2)

where Ψ is the C∞ Lagrangian action functional defined in (1.13). Since v2 and w̃ are C∞ functions,
Φ̃ ∈ C∞([0, δ0]×B(1)×B(2R∞;V1),R).

Lemma 6.1 If v1 is a critical point of Φ̃(δ, λ, ·) : B(2R∞;V1) 7→ R and (δ, λ, v1) ∈ B∞ then

u = v1 + v2(δ, λ, v1, w̃(δ, λ, v1)) + w̃(δ, λ, v1) ∈ Xσ/2,s

is a solution of (1.10).
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Proof. Set for brevity v2(v1) := v2(δ, λ, v1, w̃(δ, λ, v1)) ∈ V2 ∩ Xσ/2,s and w̃(v1) := w̃(δ, λ, v1) ∈
W ∩Xσ/2,s. Since v2(v1) is a solution of the (Q2)-equation, we have

(DuΨ)(δ, λ, v1 + v2(v1) + w̃(v1))[h2] = 0, ∀h2 ∈ V2.

Moreover, since (δ, λ, v1) ∈ B∞, by Proposition 5.1, w̃(v1) solves the (P )-equation, so that

(DuΨ)(δ, λ, v1 + v2(v1) + w̃(v1))[h] = 0, ∀h ∈ W.

Now, ∀h1 ∈ V1,

Dv1Φ̃(δ, λ, v1)[h1] = (DuΨ)(δ, λ, v1 + v2(v1) + w̃(v1))
[
h1 + Dv1v2(v1)[h1] + Dv1w̃(v1)[h1]

]
= (DuΨ)(δ, λ, v1 + v2(v1) + w̃(v1))[h1]

because Dv1v2(v1)[h1] ∈ V2, Dv1w̃(v1)[h1] ∈ W . Therefore for u = v1 + v2(v1) + w̃(v1)

Dv1Φ̃(δ, λ, v1)[h1] =
∫

Ω

(
− ω2utt + uxx − εg(δ, λ, x, u)

)
h1

=
∫

Ω

(
− ω2(v1)tt + (v1)xx − εΠV1g(δ, λ, x, u)

)
h1

= 0 , ∀h1 ∈ V1

and so v1 solves also the (Q1)-equation (6.1) (recall (1.18)).

Lemma 6.2 The reduced action functional Φ̃ can be written

Φ̃(δ, λ, v1) = εΦ(δ, λ, v1)

where Φ ∈ C∞([0, δ0]×B(1)×B(2R∞;V1);R) satisfies

Φ(0, λ, v1) = Φ0(v1) := Ψ∞(v1 + v2(0, 0, v1, 0)). (6.3)

Proof. Recall that ε = δp−1. It is enough to prove that ∀(λ, v1) ∈ B(1)×B(2R∞;V1),

lim
δ→0

Φ̃(δ, λ, v1)
δp−1

= Φ0(v1) . (6.4)

Indeed (6.4) implies that (Dk
δ Φ̃)(0, λ, v1) = 0 for any k = 0, . . . , p− 2, and, using Taylor integral formula,

we can write

Φ̃ = δp−1Φ with Φ(δ, λ, v1) :=
∫ 1

0

(1− t)p−2

(p− 2)!
(Dp−1

δ Φ̃)(tδ, λ, v1) dt .

Since Φ̃ is C∞, so is Φ. Moreover

Φ(0, λ, v1) =
1

(p− 1)!
(Dp−1

δ Φ̃)(0, λ, v1) = Φ0(v1)

still by (6.4).
Now we prove (6.4). Let us fix v1, λ and set for brevity w̃(δ) := w̃(δ, λ, v1), v2(δ) := v2(δ, λ, v1, w̃(δ)),

v(δ) = v1 + v2(δ). Note that w̃(0) = 0, v2(0) = v2(0, λ, v1, 0) = v2(0, 0, v1, 0). We have, for δ ∈ (0, δ0),

Φ̃(δ, λ, v1)
ε

=
1
ε

∫
Ω

ω2 v(δ)2t
2

− v(δ)2x
2

+ ω2 w̃(δ)2t
2

− w̃(δ)2x
2

− εG(δ, λ, v(δ) + w̃(δ))

= J(δ) + O
(‖w̃(δ)‖2H1

ε

)
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where
J(δ) :=

∫
Ω

1
2
(v(δ)2t + v(δ)2x)−G(δ, λ, v(δ) + w̃(δ)).

Note that J is smooth. Hence, since ‖w̃(δ)‖H1 = O(ε) by Proposition 5.1, limδ→0 Φ̃(δ, λ, v1)/ε = J(0),
with

J(0) =
∫

Ω

1
2
(v(0)2t + v(0)2x)−G(0, λ, v(0)) = Ψ∞(v(0)) = Φ0(v1) .

This completes the proof of (6.4).

6.2 The functional Φ0

Let S1 := {v1 ∈ V1 | ‖v1‖H1 = 1}. We recall that Φ0 is defined in (6.3). Define I0 : S1 7→ R by

I0(v1) := max
t∈[0,2R∞]

Φ0(tv1) and c := inf
S1

I0

which is attained on the minimizing set M0 :=
{

v1 ∈ S1 | I0(v1) = c
}
6= ∅ . M0 is not empty, by the

compactness of S1 and the continuity of I0 (like in Theorem 2.2).

Lemma 6.3 (Φ0 satisfies the assumption (MP) of Theorem 2.2)

• (i) c = c∞ is the “Mountain pass” critical level of Ψ∞, see Lemma 3.2;

• (ii) ∀v1 ∈M0 the function (t 7→ Φ0(tv1)) restricted to [0, 2R∞] has a unique maximum point, which
is in (0, 2R∞) and it is nondegenerate.

Proof. We first claim that
c ≤ c∞ . (6.5)

In fact, let v ∈ K∞ and v1 := ΠV1v, v2 := ΠV2v. For any 0 ≤ s ≤ (2R∞/‖v1‖0,0) we have

‖sv1‖0,0 ≤ 2R∞ ,
∥∥∥sv2

∥∥∥
0,0
≤ 2R∞

‖v2‖0,0

‖v1‖0,0
≤ R∞

because 2‖v2‖0,0 ≤ ‖v1‖0,0 by the choice of N in (3.16). Therefore sv1 ∈ B(2R∞;V1), sv2 ∈ B(R∞;V2)
and, by the minimization property of Proposition 4.1-c),

∀s ∈
[
0,

2R∞
‖v1‖0,0

]
, Φ0(sv1) := Ψ∞

(
sv1 + v2(0, 0, sv1, 0)

)
≤ Ψ∞(sv1 + sv2) = Ψ∞(sv) ≤ c∞ (6.6)

because Ψ∞(sv) ≤ c∞, ∀s ∈ R+, by Lemma 3.2-(i). (6.6) proves that

I0

( v1

‖v1‖0,0

)
:= max

t∈[0,2R∞]
Φ0

( t

‖v1‖0,0
v1

)
≤ c∞

and hence c ≤ c∞.
Now assume that v1 ∈M0 (i.e. v1 ∈ S1 and I0(v1) = c) and let

v(t) := tv1 + v2(0, 0, tv1, 0) ∈ V , ∀t ∈ [0, 2R∞] . (6.7)

Recall that ‖v‖0,0 ≡ ‖v‖H1 . Since ‖v(0)‖H1 = 0, ‖v(2R∞)‖H1 ≥ ‖2R∞v1‖H1 = 2R∞ and the map
(t 7→ v(t)) is continuous, there exists t∗ ∈ (0, 2R∞) such that ‖v(t∗)‖H1 = R∞. But

Ψ∞(v(t∗)) =: Φ0(t∗v1) ≤ max
[0,2R∞]

Φ0(tv1) =: I0(v1) = c ≤ c∞ (6.8)
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by (6.5). By Lemma 3.2-(ii) since v(t∗) ∈ SR∞ , Ψ∞(v(t∗)) ≥ c∞ and (6.8) yields

c∞ ≤ Ψ∞(v(t∗)) = Φ0(t∗v1) ≤ c ≤ c∞

namely
c∞ = Ψ∞(v(t∗)) = Φ0(t∗v1) = c = c∞ (6.9)

proving (i). Furthermore, by Lemma 3.2-(ii), v(t∗) ∈ K∞. Let v := v(t∗). By (6.7), v1 := ΠV1v = t∗v1,
‖v1‖H1 = t∗, and, by (6.6),

∀t ∈ [0, 2R∞] , Φ0(tv1) = Φ0

( t

t∗
v1

)
≤ Ψ∞

( t

t∗
v
)
≤ c∞ (6.10)

with equality for t = t∗ by (6.9). Hence t∗ ∈ (0, 2R∞) is a maximum point of (t 7→ Φ0(tv1)) in [0, 2R∞].
Now, by Lemma 3.2-(i), since v ∈ K∞, the function

[0, 2R∞] 3 t 7→ Ψ∞
( t

t∗
v
)

attains a unique non-degenerate maximum at t∗ ∈ (0, 2R∞) with maximal value c∞. Hence, by (6.10),
t∗ is also the unique maximum point of (t 7→ Φ0(tv1)) in [0, 2R∞] and it is nondegenerate.

6.3 Solution of the (Q1)-equation

By Lemma 6.1 and Lemma 6.2 we are interested in critical points of Φ.

Lemma 6.4 Let δ0 > 0 be small enough.
(i) ∀ 0 ≤ δ ≤ δ0, ∀λ ∈ B(1), Φ(δ, λ, ·) has a not empty Mountain-Pass critical set

K(δ, λ) ⊂ B(2R∞;V1) \ {0}

which satisfies
sup

z∈K(δ,λ)

dist
(
z,K0

)
→ 0 as δ → 0 , (6.11)

uniformly for λ ∈ B(1), where
K0 ⊂ B(2R∞;V1)

denotes the Mountain-Pass critical set of Φ0.
(ii) Select, ∀(δ, λ) ∈ [0, δ0] × B(1), a critical point V1(δ, λ) ∈ K(δ, λ) of Φ(δ, λ, ·) in such a way that

the map V1(·, ·) is measurable. There are functions

βi(δ, λ) a.e.= (∂λi
Φ)(δ, λ,V1(δ, λ)) , 1 ≤ i ≤ M

which satisfy ∫
B(1)

Var[0,δ0]βi(·, λ) dλ < +∞ . (6.12)

Proof. By lemmas 6.2, 6.3 and 2.3, provided that δ0 is small enough, the functional Φ satisfies the
assumption (MP) of Theorem 2.2. Applying this theorem we derive the existence of mountain-pass critical
points of Φ(δ, λ, ·) for all (δ, λ) ∈ [0, δ0] × B(1). Moreover the mountain pass critical value map m(δ, λ)
is differentiable almost everywhere and by (iv) of Theorem 2.2, ∂λim(δ, λ) = (∂λiΦ)(δ, λ,V1(δ, λ)) at the
points where m is differentiable. Hence, by (iii) of Theorem 2.2, (ii) holds. At last (6.11) is a consequence
of Lemma 2.3.

The map V1 defined in Lemma 6.4-(ii) provides, for λ ∈ B(1), a (not necessarily continuous) path

V1(·, λ) : [0, δ0] 7→ K(δ, λ)
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of critical points of Φ(δ, λ, ·). We shall prove that for almost all λ ∈ B(1),

Cλ :=
{

δ ∈ [0, δ0] | (δ, λ,V1(δ, λ)) ∈ B∞

}
(6.13)

has asymptotically full density at δ = 0. This will be a consequence of Corollary 5.1 once we prove that
the BV-property (5.21) holds for almost any λ ∈ B(1). Here the choice of the nonlinearities bi(x)uqi in
(1.4) enters into play.

Proposition 6.1 Suppose

Φi(v1) :=
1

qi + 1

∫
Ω

bi(x)
(
v1 + v2(v1)

)qi+1

(6.14)

with v2(v1) := v2(0, 0, v1, 0), satisfy the following property:

• (P) (∇Φi(v1) generate V1) ∀v1 ∈ K0, span
{
∇Φi(v1) , i = 1, . . . ,M

}
≡ V1.

Then, for a.e. λ ∈ B(1), there exist a finite collection (Ej,λ) of measurable subsets of (0, δ0] satisfying
(5.20) and property (5.21) holds.

Proof. We shall need the following lemmas.

Lemma 6.5 ∀ i = 1, . . . ,M , ∀(δ, λ, v1) ∈ (0, δ0]×B(1)×B(2R∞;V1),

(∂λi
Φ)(δ, λ, v1) = δqi−p

[
Φi(v1) +Ri(δ, λ, v1)

]
(6.15)

with
|Ri(δ, λ, v1)| = O(δ) , |∇v1Ri(δ, λ, v1)| = O(δ) . (6.16)

Proof. Setting v2 := v2(δ, λ, v1, w̃) and w̃ := w̃(δ, λ, v1)

(∂λi
Φ)(δ, λ, v1) =

1
ε
(∂λi

Ψ)(δ, λ, v1 + v2 + w̃) +
1
ε
(DuΨ)(δ, λ, v1 + v2 + w̃)[∂λi

v2 + ∂λi
w̃]

=
δqi−p

qi + 1

∫
Ω

bi(x)
(
v1 + v2 + w̃

)qi+1

+
1
ε

∫
Ω

[
Lωv2 − εΠV2g(δ, λ, v1 + v2 + w̃)

]
∂λiv2

+
1
ε

∫
Ω

[
Lωw̃ − εΠW g(δ, λ, v1 + v2 + w̃)

]
∂λi

w̃

=
δqi−p

qi + 1

∫
Ω

bi(x)
(
v1 + v2 + w̃

)qi+1

+
∫

Ω

r(δ, λ, v1)∂λiw̃

since v2 solves the (Q2)-equation. By (5.4), ‖r‖σ/4,s = O(exp(−Cδ−α)), hence

lim
δ→0

1
δqi−p

(∂λi
Φ)(δ, λ, v1) =

1
qi + 1

∫
Ω

bi(x)
(
v1 + v2(v1)

)qi+1

=: Φi(v1) .

As in the proof of Lemma 6.2 we can write

(∂λi
Φ)(δ, λ, v1) = δqi−pϕi(δ, λ, v1) with ϕi ∈ C∞ , ϕi(0, λ, v1) = Φi(v1) .

Setting Ri(δ, λ, v1) := ϕi(δ, λ, v1)− ϕi(0, λ, v1) this yields (6.15) and (6.16).

Lemma 6.6 There exist L > 0 and a finite open covering (Uj)1≤j≤n in V1 of K0 such that, if δ0 is small
enough, then ∀δ ∈ (0, δ0], ∀v1, v

′
1 ∈ Uj

|v1 − v′1| ≤ L
M∑
i=1

1
δqi−p

∣∣∣(∂λi
Φ)(δ, λ, v1)− (∂λi

Φ)(δ, λ, v′1)
∣∣∣ .
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Proof. Let v ∈ K0. By Property (P), there are 1 ≤ i1 < . . . < iN ≤ M such that {∇Φi1(v), . . . ,∇ΦiN
(v)}

form a basis of V1. Hence, by the implicit function theorem, there are an open neighborhood U(v) of v
in V1 and a constant Lv > 0 such that Φi1 , . . . ,ΦiN

are coordinates in U(v), and

∀v1, v
′
1 ∈ U(v) , |v1 − v′1| ≤ Lv

N∑
l=1

|Φil
(v1)− Φil

(v′1)| ≤ Lv

M∑
i=1

|Φi(v1)− Φi(v′1)|.

By Lemma 6.5, for δ ∈ (0, δ0],

|Φi(v1)− Φi(v′1)| ≤ 1
δqi−p

∣∣∣(∂λi
Φ)(δ, λ, v1)− (∂λi

Φ)(δ, λ, v′1)
∣∣∣ +

∣∣∣Ri(δ, λ, v1)−Ri(δ, λ, v′1)
∣∣∣

≤ 1
δqi−p

∣∣∣(∂λi
Φ)(δ, λ, v1)− (∂λi

Φ)(δ, λ, v′1)
∣∣∣ + Cδ|v1 − v′1|

for some constant C. Hence, for δ0 small enough, we have

∀v1, v
′
1 ∈ U(v) , |v1 − v′1| ≤ 2Lv

M∑
i=1

1
δqi−p

∣∣∣(∂λi
Φ)(δ, λ, v1)− (∂λi

Φ)(δ, λ, v′1)
∣∣∣ .

K0 being compact, there is a finite subset G of K0 such that K0 ⊂ ∪v∈GU(v). This yields the statement
with L := maxv∈G 2Lv.

Now let us consider the map V1 defined in Lemma 6.4-(ii). By definition, ∀δ ∈ [0, δ0), ∀λ ∈
B(1), V1(δ, λ) ∈ K(δ, λ). Since ∪n

j=1Uj is an open neighborhood of the compact set K0, by (6.11),
for δ0 small enough, K(δ, λ) ⊂ ∪n

j=1Uj . Let

Aλ :=
{

δ ∈ [0, δ0] | βi(δ, λ) 6= (∂λiΦ)(δ, λ,V1(δ, λ)) for some i
}

,

the maps βi being defined in Lemma 6.4. We know that meas(Aλ) = 0. Define

Ej,λ :=
{

δ ∈ [0, δ0] | V1(δ, λ) ∈ Uj

}
\Aλ.

It is clear that the collection (Ej,λ)1≤j≤n satisfies (5.20).
By Lemma 6.6, ∀1 ≤ j ≤ n, ∀δ ∈ (0, δ0], ∀δ1, δ2 ∈ Ej,λ with δ/2 ≤ δ1 ≤ δ2 ≤ δ,

|V1(δ2, λ)− V1(δ1, λ)| ≤ L
M∑
i=1

1
δqi−p
2

∣∣∣(∂λiΦ)(δ2, λ,V1(δ2, λ))− (∂λiΦ)(δ2, λ,V1(δ1, λ))
∣∣∣

≤ L

M∑
i=1

1
δqi−p
2

(
|βi(δ2, λ)− βi(δ1, λ)|

+
∣∣∣(∂λiΦ)(δ1, λ,V1(δ1, λ))− (∂λiΦ)(δ2, λ,V1(δ1, λ))

∣∣∣).

Using that ∂δ(∂λi
Φ)(δ, λ, v1) is bounded, that δ2 ≥ δ/2 and qM − p ≥ qi − p, we derive

|V1(δ2, λ)− V1(δ1, λ)| ≤ L
(δ

2

)−(qM−p) M∑
i=1

[
|βi(δ2, λ)− βi(δ1, λ)|+ C(δ2 − δ1)

]
and therefore, for a.e. |λ| ≤ 1, ∀1 ≤ j ≤ n, ∀δ ∈ (0, δ0],

Var[δ/2,δ]∩Ej,λ
V1(·, λ) ≤ Cδ−(qM−p)

M∑
i=1

(
Var[δ/2,δ]βi(·, λ) + Cδ0

)
= δ

−(qM−p)
0 V (λ)

where V (·) ∈ L1(B(1)) by (6.12). In particular |V (λ)| < +∞ for almost all |λ| ≤ 1 and (5.21) is verified.
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7 Proof of Theorem 1.2

Proposition 7.1 Let q > p be an integer. There exist bi(x) ∈ H1(0, π), qi ∈ N, qi ≥ q, i = 1, . . . ,M for
which Φi defined in (6.14), satisfy property (P) of Proposition 6.1.

Proposition 7.1 is a consequence of Lemma 7.1 below, which is proved in the next subsection.

Lemma 7.1 Let q > p. Let v,H ∈ V be analytic and v have minimal period 2π. Then∫
Ω

b(x)vqH = 0 , ∀ q ≥ q , q ∈ N, ∀ b(x) ∈ H1(0, π) =⇒ H = 0 . (7.1)

Proof of Proposition 7.1. ∀v1 ∈ K0 there exists a finite set of nonlinearities {bi(x)uqi , i = 1, . . . , N}
with qi ≥ q > p, qi ∈ N, such that {∇Φi(v1) , i = 1, . . . , N} span the whole V1. If not there exists
h1 ∈ V1 \ {0} such that

(DΦ)(v1)[h1] =
∫

Ω

b(x)
(
v1 + v2(v1)

)q(
h1 + ∂v1v2[h1]

)
= 0 , ∀ q ≥ q > p , ∀ b(x) ∈ H1(0, π),

contradicting (7.1) of Lemma 7.1 with v = v1 + v2(v1), H = h1 + ∂v1v2[h1] 6= 0.
The same finite set of ∇Φi(v′1), i = 1, . . . , N , still generates V1 for v′1 in a neighborhood U(v1) of v1.
By compactness, we can cover K0 with a finite collection of U(v1). We have therefore extracted a

finite set of nonlinearities for which property (P) holds.

Remark 7.1 It can be easily seen that the map which associates to ap the critical set K∞ of Ψ∞ (Lemma
3.2) is upper semi-continuous, i.e. for any neighborhood O of K̄∞ in (V, ‖ · ‖H1) associated to āp,
if ‖ap − āp‖H1(0,π) is small enough then K∞ ⊂ O . Consequently, by Lemmae 3.6 and 3.7, given
āp ∈ H1(0, π), āp(π − x) 6≡ (−1)pāp(x), there is an open neighborhood N of āp in H1(0, π) such that V1

(i.e. N in (3.18)) can be chosen the same for all ap ∈ N . Now, by Lemma 6.3 and its proof, we have
K0 = ΠV1K∞. Hence, by the above upper semi-continuity property and the fact that the map (ap 7→ Φi)
(Φi is defined in (6.14)) is continuous from H1(0, π) to C1(V1), if the nonlinearities bi(x)uqi satisfy
property (P) of Proposition 6.1 for āp, they satisfy property (P) also for ap in a small neighborhood of
āp.

Remark 7.2 Since the density statement (7.1) holds for any large q̄, we could take the exponents qi in
Proposition 7.1 satisfying q ≤ q1 < . . . < qM .

7.1 Proof of Lemma 7.1

By assumption∫
Ω

b(x)vqH =
∫ π

0

b(x)
( ∫

T

v(t, x)qH(t, x) dt
)

dx = 0 , ∀b(x) ∈ H1(0, π)

and therefore, setting H(t, x) := h(t + x)− h(t− x),∫
T

v(t, x)qH(t, x) dt =
∫
T

(
η(t + x)− η(t− x)

)q(
h(t + x)− h(t− x)

)
dt = 0 , ∀x ∈ [0, π] . (7.2)

Changing variables, we get∫
T

(
η(t + x)− η(t− x)

)q

h(t− x) dt =
∫
T

(η(s + 2x)− η(s))qh(s) ds

and∫
T

(
η(t + x)− η(t− x)

)q

h(t + x) dt =
∫
T

(η(s)− η(s− 2x))qh(s) ds = −
∫
T

(η(s + 2x)− η(s))qh(s) ds .
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In the last equality we make the change of variable s 7→ −s and use that η and h are odd and 2π-periodic.
Hence (7.2) is equivalent to∫

T

(
η(s + 2x)− η(s)

)q

h(s) ds = 0 , ∀x ∈ [0, π] .

The conclusion of Lemma 7.1 will follow by the next Lemma.

Lemma 7.2 Let η, h : T → R be analytic and odd. Let η have minimal period 2π. If∫
T

(
η(y + s)− η(s)

)q

h(s) ds = 0 , ∀ q ≥ q , q ∈ N , ∀y ∈ T , (7.3)

then h = 0.

Proof. Step 1: For any y ∈ T and α < β∫
{α≤η(y+s)−η(s)≤β}

h(s) ds = 0 . (7.4)

By the assumption (7.3), for any real polynomial P (X) :=
∑

k≥q akXk divisible by Xq,∫
T

P
(
η(y + s)− η(s)

)
h(s) ds = 0 . (7.5)

We have
∫
T

h(s) ds = 0 since h is odd, and so (7.5) holds for any real polynomial

P = a0 +
∑
k≥q

akXk. (7.6)

Set M := 2‖η‖∞ and let A ⊂ C([−M,M ],R) be the set of the functions on [−M,M ] defined by a
polynomial of the form (7.6).

By the Stone-Weierstrass theorem, the set A is dense in C([−M,M ],R) because it is a subalgebra
with unity and A separates the points of [−M,M ] (take any Xq with q odd). As a consequence for any
continuous function g ∈ C(R) ∫

T

g
(
η(y + s)− η(s)

)
h(s) ds = 0 . (7.7)

Let α < β. ∀ε > 0 let gε ∈ C(R, [0, 1]) be a continuous function such that

gε(s) =
{

0 for s /∈ [α− ε, β + ε]
1 for s ∈ [α, β] .

By (7.7) and the Lebesgue dominated convergence theorem

0 = lim
ε→0

∫
T

gε

(
η(s + y)− η(s)

)
h(s) ds =

∫
T

1[α,β]

(
η(s + y)− η(s)

)
h(s)

=
∫
{α≤η(s+y)−η(s)≤β}

h(s) ds ,

proving (7.4).

Step 2: If s0 is a critical point of
ay(s) := η(s + y)− η(s)

and ay(s) has no other critical point with the same critical value ay(s0), then h(s0) = 0.
We can assume that y 6= 0 [2π]. The function ay does not vanish everywhere because η has minimal
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period 2π and therefore y is not a period of η. Moreover the function ay is neither constant because its
mean value is 0.

Let α := ay(s0). By the analyticity of η, the set a−1
y (α) is finite. Let us call s0, s1, . . . , sk its elements.

By the assumption, s1, . . . , sk are not critical points of ay(s). For µ > 0 small enough, the set

a−1
y

(
[α− µ, α + µ]

)
=

{
s ∈ T | α− µ ≤ ay(s) ≤ α + µ

}
is the disjoint union of closed intervals I0, . . . , Ik, Ii containing si. Moreover, since si, i ≥ 1, are not
critical points of ay(s), the Lebesgue measure of Ii satisfies meas(Ii) = O(µ). Hence∫

a−1
y ([α−µ,α+µ])

h(s) ds =
∫

I0

h(s) ds +
k∑

i=1

∫
Ii

h(s) ds =
∫

I0

h(s) ds + O(µ) . (7.8)

By the first step (7.4), the left hand side of (7.8) vanishes ∀µ > 0. As a consequence
∫

I0
h(s) ds = O(µ)

and ∫
I0

h(s) ds

meas(I0)
= O

( µ

meas(I0)

)
. (7.9)

Now, since s0 is a critical point of ay(s), meas(I0) ≥ c
√

µ for some c > 0. So µ/meas(I0) tends to 0 as
µ → 0, while the first term in (7.9) tends to h(s0), by the continuity of h. We conclude that h(s0) = 0.

Step 3: If z0 ∈ T is such that h(z0) 6= 0 and η′′(z0) 6= 0, then

∃σ ∈ T\{0}, η′(z0 − σ) = η′(z0) = η′(z0 + σ) . (7.10)

First note that, since h is 2π-periodic and odd, h(0) = h(π) = 0. Hence z0 /∈ {0, π}.
For any z, −z is a critical point of the function a2z(s),

a′2z(−z) = η′(−z + 2z)− η′(−z) = 0 , a2z(−z) = 2η(z) ,

since η′ is even and η is odd. Fix γ > 0 small such that ∀z ∈ (z0 − γ, z0 + γ), 2z 6= 0 [2π] and h(z) 6= 0.
For any z ∈ (z0 − γ, z0 + γ), h(−z) = −h(z) 6= 0 and so, by Step 2, there exists another critical point
s(z) of a2z at the same critical level, i.e. the systems of equations (in s){

η(2z + s)− η(s)− 2η(z) = 0
η′(2z + s)− η′(s) = 0

has a solution s(z) 6= −z.
By the compactness of T, there is a sequence (zn) → z0, with zn 6= z0 such that sn := s(zn) → s ∈ T.

We have a′′2z0
(−z0) = η′′(z0)−η′′(−z0) = 2η′′(z0) 6= 0. Hence there is α > 0 such that if |z−z0| ≤ α then

a′′2z(t) 6= 0, ∀t ∈ (−z0−α,−z0+α). In particular, for |z−z0| < α, there is at most one t ∈ (−z0−α,−z0+α)
such that a′2z(t) = 0, and necessarily t = −z. Hence, for n large, s(zn) /∈ (−z0 − α,−z0 + α), which
implies

s 6= −z0 . (7.11)

We have

η(2zn + sn)− η(sn)− 2η(zn) = 0 (7.12)
η′(2zn + sn)− η′(sn) = 0 (7.13)

and passing to the limit we get

η(2z0 + s)− η(s)− 2η(z0) = 0 (7.14)
η′(2z0 + s)− η′(s) = 0 (7.15)

Let us prove that also
η′(s + 2z0) = η′(z0) . (7.16)
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If not, by (7.14) and the implicit function theorem, there is an analytic map b(s) defined in a neighborhood
of s such that b(s) = z0 and, for (z, s) near (z0, s),

η(s + 2z)− η(s)− 2η(z) = 0 ⇐⇒ z = b(s) .

In particular, by (7.12), zn = b(sn), and so by (7.13), η′(sn+2b(sn))−η′(sn) = 0 for n large. By analyticity
of the map (s 7→ η′(s + 2b(s))− η′(s)), this implies that for all s near s, η′(s + 2b(s))− η′(s) = 0. Hence,
derivating the equality η(s + 2b(s))− η(s)− 2η(b(s)) = 0, we get (η′(s + 2b(s))− η′(b(s)))b′(s) = 0. Now,
since zn = b(sn), b(s) is not constant. Hence, again by analyticity, we get η′(s + 2b(s))− η′(b(s)) = 0 for
s in a neighborhood of s. In particular η′(s + 2z0)− η′(s) = 0, which contradicts our hypothesis.

Finally, by (7.15), (7.16) and since η′ is even,

η′(s + 2z0) = η′(z0) = η′(s) = η′(−s) .

We obtain (7.10) with σ := s + z0, σ 6= 0 by (7.11).

Step 4 : h = 0.
Arguing by contradiction, assume that h 6≡ 0. Let J = [m,M ] = η′(T). For λ ∈ J let

(η′)−1(λ) :=
{

s ∈ T | η′(s) = λ
}

.

Let B1 ⊂ J denote the set of the critical values of η′, and B2 the set of λ ∈ J for which there is a zero of
h in (η′)−1(λ). By analyticity, the functions η′′ and h have a finite number of roots and, therefore, the
sets B1 and B2 are finite.

Let I = (λ1, λ2) be some open interval included in J\(B1 ∪B2). Since I does not contain any critical
value of η′, there exist analytic maps g1, . . . , gk : I → T such that

∀λ ∈ I , (η′)−1(λ) =
{

g1(λ), . . . , gk(λ)
}

.

Since ∀ i = 1, . . . , k and ∀λ ∈ I, h(gi(λ)) 6= 0 and η′′(gi(λ)) 6= 0, by Step 3, there exist σi(λ) 6= 0 such
that

η′(gi(λ)− σi(λ)) = η′(gi(λ)) = λ = η′(gi(λ) + σi(λ)) .

Hence gi(λ)− σi(λ) = gl(λ), gi(λ) + σi(λ) = gj(λ) for some l, j ∈ {1, . . . , k}, l, j 6= i (possibly depending
on λ), namely 2gi(λ)− gj(λ)− gl(λ) = 0. However, since l, j run over a finite set of indices, there exist
l, j, l, j 6= i, such that 2gi(λ) − gj(λ) − gl(λ) = 0 for infinitely many different λ and by analyticity the
equality holds for any λ ∈ I. Hence

∀i = 1, . . . , k ∃ l, j 6= i : 2gi(λ)− gj(λ)− gl(λ) = 0 , ∀λ ∈ I . (7.17)

We claim that
∃ l 6= i : g′l(λ) = g′i(λ) ∀λ ∈ I . (7.18)

Indeed, for any λ ∈ I choose i := i(λ) such that |g′i(λ)| = maxr=1...,k |g′r(λ)|. There is an index i such that
i := i(λ) for λ ∈ A, A being an infinite subset of I. By (7.17) there are j, l 6= i such 2g′i(λ)−g′j(λ)−g′l(λ) =
0, ∀λ ∈ I. This equality, together with |g′j(λ)|, |g′l(λ)| ≤ |g′i(λ)|, imply g′j(λ) = g′l(λ) = g′i(λ) for λ ∈ A,
hence for λ ∈ I, still by analyticity.

By (7.18), there is σ ∈ T , σ 6= 0, such that

gl(λ)− gi(λ) = σ , ∀λ ∈ I

and therefore
a′σ(gi(λ)) := η′(gi(λ) + σ)− η′(gi(λ)) = λ− λ = 0 , ∀λ ∈ I .

gi|I is injective because, for λ ∈ I, g′i(λ) = 1/η′′(gi(λ)) 6= 0, and therefore the function a′σ vanishes at
infinitely many points. By analyticity a′σ ≡ 0. Since aσ(s) := η(s + σ) − η(s) has zero mean value, we
deduce that aσ(s) = 0. Hence σ 6= 0 [2π] is a period of η, a contradiction.
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7.2 Conclusion

To conclude, let us show how to put together the results of sections 3-7 to prove Theorem 1.2.
Assume that ap(x) ∈ H1(0, π) satisfies (1.17). Then G(v) :=

∫
Ω

ap(x)vp+1 does not vanish everywhere
in V , and we assume, for instance, that there is v ∈ V such that G(v) > 0, see (1.16). Then (Lemma 3.2)
the functional Ψ∞ : V 7→ R defined in (1.21) with s∗ = 1 possesses a nontrivial “Mountain pass” critical
set K∞ ⊂ SR∞ := {‖v‖H1 = R∞}.

Next we fix the dimension N ∈ N of the finite dimensional subspace V1 in the orthogonal decompo-
sition V = V1 ⊕ V2, N depending only on ap(x). N satisfies (3.18) and N ≥ N∞ where N∞ is defined in
Lemma 3.7.

Thanks to Proposition 4.1, we define in (6.3) a functional Φ0 : B(2R∞;V1) 7→ R, depending only on
ap(x), whose Mountain pass critical set K0 is the orthogonal projection of K∞ onto V1 (Lemma 6.3 and
its proof).

Now, q > p being given, by Proposition 7.1, there are q ≤ q1 ≤ . . . ≤ qM , qi ∈ N, and bi(x) ∈ H1(0, π)
such that condition (P) of Proposition 6.1 holds. With this choice of qi and bi(x), we consider, for any
nonlinearity r(x, u) satisfying assumption (1.9), the λ-parametrised system (1.5) with f(λ, x, u) like in
(1.4).

By Propositions 4.1 and 5.1 we define, for δ0 > 0 small enough (depending on ap, qi, bi, r), the
“reduced action functional” Φ̃ : [0, δ0]× {λ ∈ RM | |λ| ≤ 1} × B(2R∞;V1) 7→ R in (6.2), which satisfies
the following property: there is a “large” Cantor set B∞ (defined in Proposition 5.1) such that any critical
point v1 of Φ(δ, λ, ·) = ε−1Φ̃(δ, λ, ·) for which (δ, λ, v1) ∈ B∞, gives rise (Lemma 6.1) to a 2π-time-periodic
solution of (1.10) with ω(δ) =

√
1 + 2δp−1.

Now, by Proposition 6.1, there is a subset Ar ⊂ {|λ| ≤ 1} of full measure such that, ∀λ ∈ Ar, there
is a path V1(·, λ) : [0, δ0] 7→ B(2R∞, V1) and a finite collection of Ej,λ ⊂ (0, δ0] satisfying meas((0, δ0] \
∪jEj,λ)= 0 and such that

(i) for all δ ∈ [0, δ0], V1(δ, λ) is a critical point of Φ(δ, λ, ·) ;

(ii) the bounded variation condition (5.21) holds, with q = qM − p .

Then, by Corollary 5.1, for any λ ∈ Ar the Cantor-like subset Cλ of [0, δ0] defined in (6.13) has asymp-
totically full measure, i.e.

lim
η→0

meas(Cλ ∩ [0, η])
η

= 1 ,

and, since V1(δ, λ) is a critical point of Φ(δ, λ, ·) with (δ, λ,V1(δ, λ)) ∈ B∞, ∀δ ∈ Cλ

u(δ) := δ
[
V1(δ, λ) + v2(δ, λ,V1(δ, λ), w̃(δ, λ,V1(δ, λ))) + w̃(δ, λ,V1(δ, λ))

]
∈ Xσ/2,s

is a solution of (1.5). This entails the conclusion of Theorem 1.2.
If there is v ∈ V such that G(v) < 0, we may choose s∗ = −1. The same arguments apply, providing,

for almost all λ, a large family of periodic solutions of (1.1) with frequencies ω < 1.

8 Appendix

8.1 Proof of Lemma 3.1

Clearly m∞ < +∞ because

|G(v)| ≤
∫

Ω

|ap(x)vp+1| ≤ C|v|p+1
∞ ≤ C ′‖v‖p+1

H1 , ∀v ∈ V .

Let vn ∈ S be a maximizing sequence for G, namely

G(vn) → m∞ . (8.1)
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Since ‖vn‖H1 = 1, ∀n, we can assume that (up to subsequence) vn
H1

⇀ v̄ ∈ V and, by the compact

embedding H1(T) ↪→ L∞(T), that vn
L∞→ v̄. As a consequence

G(vn) :=
∫

Ω

ap(x)vp
n →

∫
Ω

ap(x)v̄p =: G(v̄) . (8.2)

By (8.1) and (8.2) we get G(v̄) = m∞. Actually the maximum point v̄ ∈ S. Indeed, by the lower
semicontinuity of the H1-norm for the weak topology, ‖v̄‖H1 ≤ lim infn ‖vn‖H1 = 1 . Moreover, using the
homogeneity of G

m∞ = G(v̄) = ‖v̄‖p+1
H1 G

( v̄

‖v̄‖H1

)
≤ ‖v̄‖p+1

H1 m∞

whence 1 ≤ ‖v̄‖H1 and so ‖v̄‖H1 = 1.
The compactness of M∞ is proved with similar arguments. If (vn) is a sequence in M∞ then, since

(vn) is bounded, up to a subsequence vn
H1

⇀ v̄, vn
L∞→ v̄, and, as before, we conclude G(v̄) = m∞ and

‖v̄‖H1 = 1, i.e. v̄ ∈M∞. This implies vn → v̄ also for the strong H1-topology because

‖vn − v̄‖2H1 = ‖vn‖2H1 + ‖v̄‖2H1 − 2〈vn, v̄〉H1 = 2− 2〈vn, v̄〉H1 → 0

by the weak convergence of (vn) to v.

8.2 Proof of Proposition 4.1-d)

We have ∀y ∈ Yσ, ‖v2(y)‖σ,s ≤ R∞/2 and F(y, v2(y)) = 0 where F(y, v2) := v2 − G(y, v2). Now, the
map F is in C∞(Yσ ×B2,σ, V2 ∩Xσ,s). Moreover Dv2F(y, v2(y)) = I −Dv2G(y, v2(y)) is invertible, since
Dv2G(y, v2(y)) is a linear operator of V2 ∩Xσ,s of norm ≤ 1/4 by (4.4). Hence, by the implicit function
theorem, the map v2 is in C∞(Yσ, V2 ∩Xσ,s). Moreover, all the partial derivatives of F are bounded in
norm ‖ ‖σ,s in the set Yσ × B2,σ. Hence all the partial derivatives of the map v2 are bounded (in norm
‖ ‖σ,s) on the set Yσ.

We have ‖v1‖σ,s ≤ N
s‖v1‖σ,0 ≤ 4N

s
R∞ by (4.2). Hence, if δ0 has been chosen small enough, g(y, v2),

and, for any ki ∈ N, ∂k1
u ∂k2

λ ∂k3
δ g(y, v2) is ‖ ‖σ,s-bounded on Yσ ×B(R∞;V2 ∩Xσ,s). Hence, since

v2(y) = (−∆)−1ΠV2g(y, v2(y))

and ‖(−∆)−1ΠV2u‖σ,s+2 ≤ ‖u‖σ,s, v2(y) ∈ Xσ,s+2 and the derivatives Dkv2 are ‖ ‖σ,s+2- bounded.

8.3 The Nash-Moser Theorem

We now prove (5.4) and we report some of the steps of [6] to prove the Nash-Moser theorem 5.1.

Consider the orthogonal splitting W = W (n) ⊕W (n)⊥ where

W (n) =
{

w ∈ W
∣∣∣ w =

∑
|l|≤Ln

exp (ilt) wl(x)
}

, W (n)⊥ =
{

w ∈ W
∣∣∣ w =

∑
|l|>Ln

exp (ilt) wl(x)
}

with Ln := L02n for some large integer L0, and denote by Pn : W → W (n) and P⊥n : W → W (n)⊥ the
orthogonal projectors onto W (n) and W (n)⊥.

The C∞-regularity of the Nemitsky operator g(δ, λ, x, u) on Xσ,s, Proposition 4.1-d) and (1.12) imply

• (P1) (Regularity) Γ(·, ·, ·, ·) ∈ C∞
(
[0, δ0]×B(1)×B(2R∞;V1)×B(R∞;W ∩Xσ,s), Xσ,s

)
. More-

over DkΓ, ∀ k ≥ 0, are bounded on [0, δ0]×B(1)×B(2R∞;V1)×B(R∞;W ∩Xσ,s).

• (P2) (Smoothing) ∀ w ∈ W (n)⊥ ∩Xσ,s and ∀ 0 ≤ σ′ ≤ σ, ‖w‖σ′,s ≤ exp (−Ln(σ − σ′))‖w‖σ,s.

The core of the Nash-Moser scheme is the invertibility of the linearized operators on W (n)

Ln(δ, λ, v1, w)[h] := Lωh− εPnΠW DwΓ(δ, λ, v1, w)[h] .
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• (P3) (Invertibility of Ln) Fix γ ∈ (0, 1), τ ∈ (1, 2). There exist µ > 0, δ0 > 0 such that, if

[w]σ,s := inf
{ q∑

i=0

‖hi‖σi,s

(σi − σ)
2τ(τ−1)

τ−2

; q ≥ 1, σ ≥ σi > σ, hi ∈ W (i), w =
q∑

i=0

hi

}
≤ µ ,

‖v1‖0,0 ≤ 2R∞ and δ belongs to

∆γ,τ
n (λ, v1, w) :=

{
δ ∈ [0, δ0]

∣∣∣ |ωl − j| ≥ γ

(l + j)τ
,

∣∣∣ωl − j − ε
M(δ, λ, v1, w)

2j

∣∣∣ ≥ γ

(l + j)τ
,

l ∈ Z , j ∈ N+ , l 6= j ,
1
3ε

< l ≤ Ln, j ≤ 2Ln

}
,

then Ln(δ, λ, v1, w) is invertible and∥∥∥L−1
n (δ, λ, v1, w)[h]

∥∥∥
σ,s

≤ C

γ
(Ln)τ−1‖h‖σ,s , ∀h ∈ W (n)

for some C > 0.

The proof of property (P3) is the same as in section 4 of [6]. One difference is the presence of the
paramaters λ, the estimates being uniform in |λ| ≤ 1. The other difference is that the domain of v1 is
defined with norm ‖ · ‖0,0 instead of ‖ · ‖σ,s. However also here the estimates remain unchanged because
the dimension N of V1 is a fixed constant (see (3.18)) and we make use of Proposition 4.1-e) for the
analogue of Lemma 4.7 of [6].

Define the “loss of analyticity” γn by

γn :=
γ0

n2 + 1
, σ0 := σ , σn+1 := σn − γn , ∀ n ≥ 0 ,

and choose γ0 > 0 small such that the “total loss of analyticity” γ0

∑
n≥0(n

2 + 1)−1 ≤ σ/2.

Proposition 8.1 (Induction: Proposition 3.1 and Lemma 3.2 of [6]) Let A0 := [0, δ0] × B(1) ×
B(2R∞;V1). ∃ L0 := L0(γ, τ) > 0, ε0 := ε0(γ, τ) > 0, such that ∀ 0 ≤ εγ−1 < ε0, ∀ n ≥ 0 there exists a
solution wn := wn(δ, λ, v1) ∈ W (n) of

(Pn) Lωwn − εPnΠW Γ(δ, λ, v1, wn) = 0 ,

defined inductively for (δ, λ, v1) ∈ An ⊆ An−1 ⊆ . . . ⊆ A1 ⊆ A0 where

An :=
{

(δ, λ, v1) ∈ An−1 | δ ∈ ∆γ,τ
n (λ, v1, wn−1)

}
⊆ An−1 .

We have wn(δ, λ, v1) =
∑n

i=0 hi(δ, λ, v1) where hi(·, ·, ·) ∈ C∞(Ai,W
(i)) satisfy, ∀k ≥ 0,∥∥∥Dk

λ,v1
hi(δ, λ, v1)

∥∥∥
σi,s

≤ ε

γ
(K(k))i exp(−χi) ,

∥∥∥Dkhi(δ, λ, v1)
∥∥∥

σi,s
≤ (K(k))i exp(−χi) (8.3)

where χ ∈ (1, 2) and K0 > 0, K(k) > 0. Hence wn(·, ·, ·) ∈ C∞(An,W (n)) and, ∀k ≥ 0,∥∥∥Dk
λ,v1

wn(δ, λ, v1)
∥∥∥

σn,s
≤ ε

γ
K1(k) ,

∥∥∥Dkwn(δ, λ, v1)
∥∥∥

σn,s
≤ K1(k) (8.4)

for some K1 > 0, K1(k) > 0.

The estimates on the derivatives w.r.t. (λ, v1) in the left hand side of (8.3)-(8.4) come out from
(51)-(52) of Lemma 3.2 in [6]. Let

Ãn :=
{

(δ, λ, v1) ∈ An | dist((δ, λ, v1), ∂An) ≥ 2ν

L3
n

}
⊂ An

where 0 < νγ−1 < ν̄(γ, τ) is a small constant fixed in Lemma 8.2.
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Lemma 8.1 (Whitney extension, Lemma 3.3 of [6]) ∀i ≥ 0 there exist h̃i(·, ·, ·) ∈ C∞(A0,W
(i))

such that
h̃i(δ, λ, v1) = Ψ(δ, λ, v1)hi(δ, λ, v1), Ψ(δ, λ, v1) ∈ [0, 1] ,

with
Ψ(δ, λ, v1) = 1, ∀(δ, λ, v1) ∈ Ãi ,

and, ∀k ≥ 0,∥∥∥Dk
λ,v1

h̃i(δ, λ, v1)
∥∥∥

σi,s
≤ ε

γ
K2(k) exp(−χ̃i) ,

∥∥∥Dkh̃i(δ, λ, v1)
∥∥∥

σi,s
≤ K2(k) exp(−χ̃i) (8.5)

where χ̃ ∈ (1, χ) and K2(k) > 0. Hence w̃n(δ, λ, v1) :=
∑n

i=0 h̃i(δ, λ, v1) satisfies

w̃n(δ, λ, v1) = wn(δ, λ, v1) , ∀(δ, λ, v1) ∈ ∩n
i=0Ãi , (8.6)

w̃n(·, ·, ·) in C∞(A0,W
(n)) and ∀k ≥ 0∥∥∥Dk

λ,v1
w̃n(δ, λ, v1)

∥∥∥
σn,s

≤ ε

γ
K3(k) ,

∥∥∥Dkw̃n(δ, λ, v1)
∥∥∥

σn,s
≤ K3(k)

for some K3(k) > 0. Therefore w̃(δ, λ, v1) := limn→+∞ w̃n(δ, λ, v1) =
∑

i≥0 h̃i(δ, λ, v1) converges uni-
formly in A0 for the norm ‖ · ‖σ/2,s with all its derivatives, w̃(·, ·, ·) ∈ C∞(A0,W ∩ Xσ/2,s) and (5.2)
holds.

To arrive at the Cantor set B∞ of Proposition 5.1 define

Bn :=
{

(δ, λ, v1) ∈ Ã0 | δ ∈ ∆2γ,τ
n (λ, v1, w̃(δ, λ, v1))

}
where we have replaced γ with 2γ in the definition of ∆γ,τ

n . Note that Bn depends only on w̃.

Lemma 8.2 (The Cantor set B∞) If 0 < νγ−1 < ν̄(γ, τ), 0 < εγ−1 < ε0(γ, τ) are small enough, then

Bn ⊂ Ãn, ∀n ≥ 0 .

Hence B∞ := ∩n≥1Bn ⊂ ∩n≥1Ãn ⊂ ∩n≥1An and so, if (δ, λ, v1) ∈ B∞ then w̃(δ, λ, v1) solves the
(P )-equation (5.1).

Proof. It is Lemma 3.4 of [6]. It remains just to prove that, if j < (1− 4ε)l or j > (1 + 4ε)l, then the
inequalities

|ωl − j| ≥ 2γ

(l + j)τ
,

∣∣∣ωl − j − ε
M(δ, λ, v1, w̃(δ, λ, v1))

2j

∣∣∣ ≥ 2γ

(l + j)τ

∀l ∈ N, j ≥ 1, l 6= j, (1/3ε) < l are yet satisfied for any (δ, λ, v1) ∈ A0. For example, if j > (1 + 4ε)l
then, since ω =

√
1 + 2ε ≤ 1 + ε,∣∣∣j − ωl + ε

M(δ, λ, v1, w̃(δ, λ, v1))
2j

∣∣∣ ≥ (1 + 4ε)l − (1 + ε)l − Cε

2j

≥ 3εl − Cε

2
≥ 1

2
≥ γ

(l + j)τ

because l ≥ 1/(3ε). The other cases are similar.

Let’s now prove (5.4). Let

M := max
{

n ∈ N | Ln := L02n <
1
3ε

}
.
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Since in the definition of ∆γ,τ
n (λ, v1, w), l > 1/3ε (we don’t have to make any “excision” in the parameters

(δ, λ, v1) to invert Ln(δ, λ, v1, w) for n = 1, . . . ,M), hence wM = wM (δ, λ, v1) ∈ W (M) solves exactly

(PM ) LωwM − εPMΠW Γ(δ, λ, v1, wM ) = 0

in [0, δ]×B(1)×B(2R∞;V1), w̃M = wM (see (8.6)) and, by (8.5),

r̃M := w̃ − wM satisfy
∥∥∥r̃M (δ, λ, v1)

∥∥∥
σM ,s

≤ C
ε

γ
exp (−χ̃M ) . (8.7)

Using that wM solves equation (PM ),

Lωw̃ − εΠW Γ(δ, λ, v1, w̃) = Lω r̃M − εPMΠW

(
Γ(δ, λ, v1, w̃)− Γ(δ, λ, v1, wM )

)
− εP⊥MΠW Γ(δ, λ, v1, w̃) ,

and using properties (P1)-(P2), (8.7) and w̃ ∈ Xσ/2,s,∥∥∥Lωw̃ − εΠW Γ(δ, λ, v1, w̃)
∥∥∥

σ/4,s
≤

∥∥∥Lω r̃M

∥∥∥
σ/4,s

+ Cε
∥∥∥r̃M

∥∥∥
σ/4,s

+ Cε exp
(
− LM

σ

4

)
≤

∥∥∥Lω r̃M

∥∥∥
σ/4,s

+ C ′ε exp (−χ̃M ) (8.8)

for ε small enough because

M ≥ ln2

( 1
6L0ε

)
→ +∞ as ε → 0 and LM := L02M >> χ̃M .

Finally ∥∥∥Lω r̃M

∥∥∥
σ/4,s

≤
∑
i>M

∥∥∥Lωh̃i

∥∥∥
σ/4,s

≤
∑
i>M

∥∥∥Lωhi

∥∥∥
σ/4,s

and, since

Lωhi = εPi−1ΠW

(
Γ(δ, λ, v1, wi)− Γ(δ, λ, v1, wi−1)

)
+ εP⊥i−1PiΠW Γ(δ, λ, v1, wi) ,

we get by (8.3), (P1)-(P2), as in (8.8),∥∥∥Lω r̃M

∥∥∥
σ/4,s

≤ C ′
∑
i>M

ε exp (−χ̃i) ≤ Kε exp (−χ̃M ) . (8.9)

By (8.8) and (8.9) ∥∥∥Lωw̃ − εΠW Γ(δ, λ, v1, w̃)
∥∥∥

σ/4,s
≤ K ′ε exp (−χ̃M )

and since
χ̃M ≥ χ̃− ln2(6L0ε) = χ̃−(ln2 χ̃) lnχ̃(6L0ε) = (6L0ε)− ln2 χ̃

and, setting α := ln2 χ̃ ∈ (0, 1),∥∥∥Lωw̃ − εΠW Γ(λ, δ, v1, w̃)
∥∥∥

σ/4,s
≤ Cε exp

(
− 1

(6L0ε)α

)
≤ C ′ε exp (− C

δα
)

for 0 < δ ≤ δ0(γ, τ) small enough.
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